
P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy: a service for optimising the resource
allocation in the cloud based environments

Lisa Zangrando1

INFN, Sezione di Padova
Via Marzolo 8, I-35131 Padova, Italy
E-mail: Lisa.Zangrando@pd.infn.it

Federica Fanzago
INFN, Sezione di Padova

Via Marzolo 8, I-35131 Padova, Italy
E-mail: Federica.Fanzago@pd.infn.it

Marco Verlato
INFN, Sezione di Padova
Via Marzolo 8, I-35131 Padova, Italy
E-mail: Marco.Verlato@pd.infn.it

Massimo Sgaravatto
INFN, Sezione di Padova

Via Marzolo 8, I-35131 Padova, Italy
E-mail: Massimo.Sgaravatto@pd.infn.it

In OpenStack, the current resources allocation model provides to each user group a
fixed amount of resources. This model based on fixed quotas, accurately reflects the
economic model, pay-per-use, on which the Cloud paradigm is built. However it is not
pretty suited to the computational model of the scientific computing whose demands of
resources consumption can not be predetermined, but vary greatly in time. Usually the
size of the quota is agreed with the Cloud Infrastructure manager, contextually with the
creation of a new project and it just rarely changes over the time. The main limitation
due to the static partitioning of resources occurs mainly in a scenario of full quota
utilization. In this context, the project can not exceed its own quota even if, in the cloud
infrastructure, there are several unused resources but assigned to different groups. It
follows that the overall efficiency in a Data Centre is often rather low.

The European project INDIGO DataCloud is addressing this issue with “Synergy”, a
new service that provides to OpenStack an advanced provisioning model based on
scheduling algorithms known by the name of “fair-share”. In addition to maximizing
the usage, the fair-share ensures that these resources are equitably distributed between
users and groups.

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/
mailto:Massimo.Sgaravatto@pd.infn.it
mailto:Marco.Verlato@pd.infn.it
mailto:Federica.Fanzago@pd.infn.it
mailto:Lisa.Zangrando@pd.infn.it

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

In this paper will be discussed the solution offered by INDIGO with Synergy, by
describing its features, architecture and the selected algorithm limitations confirmed
by the preliminary results of tests performed in the Padua testbed integrated with EGI
Federated Cloud.

International Symposium on Grids and Clouds 2016
13-18 March 2016
Academia Sinica, Taipei, Taiwan

2

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

1. Introduction

Computing activities performed by user groups in the Public Research and in the Public
Administrations are usually not constant over long periods of time. Therefore, the amount of
computing resources effectively used by such user teams may vary in a quite significant way.
Often these teams make specific contracts with the Data Centres and the main requirement
concerns the provisioning of an average computing capacity to be guaranteed during a long
period which typically covers the whole year. This is strongly preferred to an agreed amount of
computing resources that should be available at any given time. So, in these Data Centres new
hardware is acquired according to the user's best estimates of the foreseen annual computing
usage needed for their activities and then partitioned among them. The partitioning policy is
defined in terms of fractions of average usage of the total available capacity that is the
percentage of the Data Centre computing resources that each team has the right to use averaging
over a fixed time window. Therefore the administrator must make sure that each stakeholder
team, at the end of the year, has enjoyed its agreed average number of resources. Moreover,
since the request for resources is typically much greater than the amount of the available
resources, it becomes necessary to seek to maximize their utilization by adopting a proper
resource sharing model.

In the current OpenStack model, the resource allocation to the user teams, namely the
projects, can be done only by granting fixed quotas. Such amount of resources cannot be
exceeded by one project even if there are unused resources allocated to different projects.
Therefore in a scenario of full resource usage for a specific project, new requests are simply
rejected. It follows that, when resources are statically partitioned among user teams, the global
efficiency in the Data Centre's resource usage can be quite low.

In the past the same problem has been solved by the batch systems and today, the INDIGO
DataCloud project [1] is addressing the same issue through “Synergy”, a new advanced
scheduling service to be integrated in the OpenStack Cloud Management Framework. Synergy
adopts a resources provisioning model based on a fair-share algorithm in order to maximize the
resources usage as well as to guarantee that resources are equally distributed among users and
groups. This can be done by considering the portion of the resources allocated to them and the
resources already consumed. Moreover it provides a persistent priority queuing mechanism for
handling user requests that can't be immediately fulfilled, so that they can be processed later,
when the required resources become available.

Starting from the list of the selected requirements which Synergy has to satisfy, this paper
provides details about the service architecture design and its implementation, focusing on the
main integration and interoperability aspects with the existing OpenStack components. It also
discusses the chosen algorithm by highlighting its limitations confirmed by the preliminary
results of tests performed in the Padua instance of the EGI Federated Cloud.

2. Requirements analisys

The scheduling capability is a set of quite complex activities that advanced schedulers
must meet. The most relevant features that were chosen when designing Synergy are::

3

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

• allow the IaaS administrators to allocate a subset of resources, referred in this document

as “dynamic resources”, to be shared among different user projects, besides the ones
statically partitioned by fixed quotas per project;

• provision of an automatism which (re)calculates the size of the dynamic resources set,

considering the total number of resources and the ones allocated as “static resources”;
• provision of a queuing mechanism for handling the user requests that cannot be

immediately fulfilled so that they can be served as the required resources are available;
• provision of a resources allocation mechanism based on a fair-share scheduling

algorithm;
• with respect to the OpenStack projects, allow the IaaS administrators to:

◦ enable the project to act only in the standard OpenStack mode: the requests are

processed according the First Come First Served (FCFS) model; the ones that can’t
be immediately satisfied are simply rejected and forgotten;

◦ enable a project to consume the either static or dynamic resources in a fair-share

mode: the user requests are processed basing on the priority order calculated by the
fair-share algorithm. The ones that can't be immediately satisfied are stored in a
persistent priority queue and served only when the required resources are available.
The resource usage is controlled by a set of fair-share policies which define:
▪ the type of resource to be accessed: static or dynamic. The static resources are

limited by the project's quota
▪ a positive integer representing the number of shares of Cloud resources

assigned to that project
▪ a maximum lifetime for the its Virtual Machines (VM) after which the VM shall

be destroyed to prevent it from running indefinitely
▪ optionally the definition also of different shares among users belonging to the

same project. If not specified, it is assumed that all users have the same share
• provision of an automatic killing mechanism which destroys all VMs running for more

than the associated maximum lifetime. Without this enforcement the fair-share based
resource allocation model is not realizable;

• allow the IaaS administrator to drain the queue of requests, needed for e.g. for

maintenance activities;
• provision of proper command line tools to allow the IaaS administrator to manage, at

runtime, the fair-share policies and the queue of requests.

3. The Synergy service

Synergy is not a scheduler. It is, indeed, a new extensible general purpose management
service to be integrated in OpenStack. Its capabilities are implemented by a collection of
managers which are specific and independent pluggable tasks, executed periodically, like the
cron jobs, or interactively through a RESTful API. Different managers can coexist and they can
interact with each other in a loosely coupled way by implementing any even complex business
logic (figure 1).

4

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

New managers can be easily implemented by extending the python abstract base class
provided by the Synergy python API:

In particular the last two methods, “execute” and “task”, allow developers to implement
synchronous or asynchronous activities.

3.1. Resource allocation

With Synergy the OpenStack administrator can allocate a new kind of resources, named
dynamic resources to be shared among different projects. Such dynamic resources are a subset
of the total resources not statically allocated with fixed quotas. Static and dynamic models can

coexist. In particular the static resources are
consumed according to the standard OpenStack
model, i.e. according to a First Come First Served
(FCFS) policy, whereas the dynamic ones are
handled by Synergy through a specific set of
policies defined by the administrator, as for
example:

• the definition of the list of projects allowed to access to the dynamic resources

• the definition of shares on resource usages for the relevant projects

5

Figure 1: the schema shows Synergy represented by the red man which handles a set of
managers (the blue men). The arrows are the interactions among managers and/or external
services.

Synergy
manager

Interaction
between managers

Interaction
with OS services

 class Manager(Thread):
def getName(self): # return the manager name
def getStatus(self): # return the manager status
def isAutoStart(self): # is AutoStart enabled or disabled?
def setup(self): # allows custom initialization
def destroy(self): # invoked before destroying
def execute(self, cmd): # executes user command synchronously
def task(self): # executed periodically at fixed rate

 class Manager(Thread):
def getName(self): # return the manager name
def getStatus(self): # return the manager status
def isAutoStart(self): # is AutoStart enabled or disabled?
def setup(self): # allows custom initialization
def destroy(self): # invoked before destroying
def execute(self, cmd): # executes user command synchronously
def task(self): # executed periodically at fixed rate

80

20

total resources

static

dynamic

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

• the maximum lifetime for Virtual Machines which is a sort of killing functionality. This

functionality prevents Virtual Machines to be running for a very long time on the
dynamic resources and it is needed to enforce the fair-sharing.

4. Advanced scheduling with Synergy

Advanced scheduling is a complex set of functionality primarily a fair-share algorithm and
the priority queuing mechanism. The fair-share algorithm maximizes the resources usage and
guarantees that resources are distributed among users following the fair-share policies defined
by the administrator. Instead the priority queuing mechanism is needed for handling the user
requests that cannot be immediately fulfilled. Five managers implement the fair-share based
scheduling model as shown in figure 2:

• FairShare-Manager: implements the main fair-share scheduling logic. In particular it

dynamically assigns the proper priority value to every user request. At any given time
the priority is a weighted sum of factors: age and fair-share expressed in terms of CPU,
memory and disk. Moreover the weight expresses the interest for a specific factor: for
example the administrator might want to make the CPU factor dominant with respect to
other parameters. The selected fair-share algorithm is based on the Priority Multifactor
Strategy of SLURM [2]. The possibility to consider pluggable mechanisms for applying
different algorithms will be explored in the future.

• Queue-Manager: provides a persistent priority queue service. It can handle several

queues. All user requests involved in the fair-share computation are stored in a specific
queue and processed asynchronously by the FairShare-Manager by taking into account
the priority order. A queue contains relevant information as: full user request,
timestamp, priority, retry count, trusted token.

• Quota-Manager: this manager is in charge of handling the quota of all projects. In

particular it calculates periodically the dynamic quota size. In case of quota saturation,
the dedicated scheduling process will be blocked by this manager until the required
resources become again available. Moreover the Quota-Manager handles the set of

6

Figure 2: the high level Synergy architecture

Synergy

FairShare M.

Queue M.

Nova M.

Keystone M.

Quota M.

Keystone

Nova

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

Virtual Machine lifetime policies for dynamic resources. So that, whenever a Virtual
Machine exceeds the limit, this manager invokes the Nova-Manager for destroying it.

• Nova-Manager and Keystone-Manager interact with the related OpenStack services.

Synergy is not intended to replace any existing OpenStack service (e.g. Nova-Scheduler),
but it may pretty complement their functionality as an independent Openstack service.
Moreover Synergy doesn't require any changes in the existing OpenStack components and it
doesn't force the utilization of its resource allocation model.

4.1 The low level architecture

The figure below illustrates the low level architecture of Synergy. In particular it shows
Synergy and its integration within the existing OpenStack architecture:

The Nova-Manager intercepts all user requests, coming from the Horizon Dashboard or
command line while the FairShare-Manager calculates and assigns to each of them the proper
priority value. Such requests are immediately inserted in a persistent priority queue by the
Queue-Manager. Moreover the FairShare-Manager fetches from the queue the request having
the higher priority, processes it and finally sends it to the Nova-Scheduler through Nova-
Manager by using the AMQP messaging system.

In the scenario of full resource utilization for a specific quota, the Quota-Manager advises
the FairShare-Manager to wait until the compute resources become again available. In case of
failure, instead, the FairShare-Manager provides a retrying mechanism which handles the failed
requests by inserting them again into the queue (up to n retries). Moreover the priority of the
queued requests is periodically recalculated for giving a chance to the older requests to rise up
in the queue.

To complete, the KeyStone-Manager provides Synergy with all user and projects
information and handles the security accesses.

To prevent any possible interaction issue with the existing OpenStack clients, no new
states have been added so that from the client point of view the queued requests remain in
“Scheduling” state till the compute resources are available.

7

Figure 3: the low level Synergy architecture

Queue
Manager

Queue
Manager

AMQP

Quota
Manager

Quota
Manager FairShare

Manager

FairShare
Manager Nova

Manager

Nova
Manager Keystone

Manager

Keystone
Manager

SynergyRESTFul
RESTFul

keystone
keystone

nova
nova

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

5. Implementation

Whenever applicable Synergy has been developed by adopting the full OpenStack style in
according to the specific development guide lines, including the coding style and the
technologies to be used: the source code id in launchpad [3][4] while the integration with the
OpenStack Continuous Integration System is being finalized.

Synergy is a full python service accessed by clients through a well defined RESTful API
which provides either management commands for handling the plugged managers (e.g. activate
manager, suspend, get status, etc) or executing specific commands on the selected manager (e.g.
get/set quota, list queues, etc). The API can be extended for including new specific interfaces.
For what concerns the internal interfaces, Synergy interacts with the OpenStack services as
Nova and Keystone, by invoking the exposed RESTful interfaces or using the internal RPC
APIs.

All Synergy default configuration options are defined in the synergy.conf file but they may
be then changed at runtime (i.e. without the need of restarting any service) by the IaaS
administrator. Moreover some information about the configuration on Nova are retrieved
accessing directly the nova.conf file.

The historical resource usage required by the fairshare scheduling algorithm is retrieved
accessing the Nova database through the provided API. This approach guarantees good
performance although there are some alternatives to be explored as the Ceilometer metering
service.

Finally, persistent data, as the priority queues, are stored in the same storage backend used
by OpenStack.

6. Testing

The main aim was to test Synergy in a real Cloud production environment in order to
verify its functionalities as the fair-share computation algorithm, the robustness as well as its
stability under different real usage conditions. Therefore the Synergy prototype was deployed at
the Padua Cloud production infrastructure which is integrated with the EGI Federated Cloud.
The testbed was composed by one server acting as Controller&Network node while six servers
were acting as Compute nodes. The total capacity was: 144VCPUs with 283GB of RAM and
3.7TB of block storage. All servers ran on Ubuntu 14.04 based operating system equipped with
the KVM hypervisor.

The Synergy service was installed on the Controller&Network node. The dynamic
resources were configured to be the 20% of the total capacity while the remaining 80% was
statically partitioned among seven projects, to support seven Virtual Organisations of the EGI
Federated Cloud.

8

80

20

total resources

static

dynamic 70

30

dynamic resources

shares
prj A

prj B

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

Different tests were run in 30 days. Two projects were set up in fair-share mode with 70%
and 30% of share respectively. In particular the share of users within the same project was tested
in two different configurations: either by defining the same share value for all users or using
different values per user.

Tests were submitted using an automatic robot which requested the instantiation of VMs at
fixed rate on both projects by using different users. A set of scripts were used to analyze the
results by considering both the information provided by the Synergy command-interface as
“get_quota” and “get_priority”, and the accounting information in terms of VCPU and memory
usage. Several cycles of tests were carried out. In each cycle, more than 20,000 VMs were
executed over two days, using Cirros images with different flavors. The VM lifetime was
limited to 5 min to speed up testing. The project resource usage accounted at the end of each
period was measured to be as expected (70% and 30%) within 1% of tolerance.

The results of tests configured with users with different share confirmed the expected
limitation of the SLURM Multifactor algorithm as documented at [5], since the expected share
of single users was never reached.

None service disruption has occurred during the tests. The performed tests coexisted and
did not interfere or degrade the normal operations of other production projects/VOs (not
involved in fair-share computation).

7. Next steps

The limitation of the SLURM Multifactor algorithm does not prevent the use of Synergy
but requires all users have the same share. The Fair Tree [5] is a more sophisticated algorithm
and fully solves the observed issue. Therefore improving Synergy with this new algorithm will
be explored. A further improvement on the fair-share strategy could be achieved by changing the
resource usage calculation. Currently the calculation is based on CPU wall-clock time but it can
be optimized by considering the different CPU performance of the Compute nodes, measured
with HEPSPEC 2006 (HS06) benchmark.

Other stress and scalability tests will be done: Synergy will the tested also in the bigger
IN2P3 production site.

The OpenStack community operates around a six-month, time-based release cycle with
frequent development milestones. The latest release version may differs from the previous one
by a set of new features in addition to bug fixes. In particular the enhancements may imply
changes on the RPC APIs as well as the database schemas and consequently Synergy must be
updated. The ultimate goal is to have Synergy integrated in the Official OpenStack distribution.
Contributing internally as OpenStack development team should minimize the development
effort.

8. Conclusions

In this paper Synergy, a new service, developed in the context of the European INDIGO
DataCloud project, was presented. It enhances OpenStack with an advanced resource
provisioning model based on the fair-share scheduling algorithm. Its capabilities, architecture
design and implementation have been discussed, also highlighting its limitations. The
development process is not completed. The prototype must be consolidated and improved with

9

P
o
S
(
I
S
G
C

2
0
1
6
)
0
3
2

Synergy Lisa Zangrando et al.

new features. The ultimate goal is to have Synergy integrated in the Official OpenStack
distribution.

References

[1] https://www.indigo-datacloud.eu/

[2] https://computing.llnl.gov/linux/slurm/priority_multifactor.html

[3] https://launchpad.net/synergy-service

[4] https://launchpad.net/synergy-scheduler-manager

[5] http://slurm.schedmd.com/SUG14/fair_tree.pdf

10

https://computing.llnl.gov/linux/slurm/priority_multifactor.html
http://slurm.schedmd.com/SUG14/fair_tree.pdf
https://launchpad.net/synergy-scheduler-manager
https://www.indigo-datacloud.eu/

	1. Introduction
	2. Requirements analisys
	3. The Synergy service
	3.1. Resource allocation

	4. Advanced scheduling with Synergy
	4.1 The low level architecture

	5. Implementation
	6. Testing
	7. Next steps
	8. Conclusions

