The latest results measured by the ATLAS experiment on lifetime, mixing and CP violation in the B^0 and B^0_s systems are presented. First, the measurement of the $B^0_s \rightarrow J/\psi \phi$ decay parameters using 4.9 fb$^{-1}$ and 14.3 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the LHC in pp collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV respectively is given. The measured values include the CP-violating phase ϕ_s and the width difference of the mass eigenstates $\Delta \Gamma_s$. The measurements for the 7 and 8 TeV data samples are combined, giving values of $\phi_s = -0.098 \pm 0.084\text{(stat.)} \pm 0.040\text{(syst.)}\text{ rad}$ and $\Delta \Gamma_s = 0.083 \pm 0.011\text{(stat.)} \pm 0.007\text{(syst.)}\text{ ps}^{-1}$. The measured values agree with the Standard Model predictions. Second, the measurement of the relative width difference $\Delta \Gamma_d / \Gamma_d$ of the B^0–\bar{B}^0 system at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 25.2 fb$^{-1}$ is presented. The measured value is $\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$. Currently, this is the most precise single measurement of $\Delta \Gamma_d / \Gamma_d$. It agrees with the Standard Model prediction and measurements by other experiments.
1. The ATLAS detector

ATLAS is a general purpose detector that consists of an inner tracker, a calorimeter and a muon spectrometer [1]. Analyses of B-physics in ATLAS mainly use information from the inner detector and the muon spectrometer. The inner detector provides momentum resolution in the pseudorapidity range $|\eta| < 2.5$. The muon spectrometer provides muon identification and triggers. The ATLAS trigger system employs a Level-1 hardware trigger and two high-level software triggers. Heavy flavour analyses in ATLAS mostly use trigger selections based on a di-muon signature. These triggers have muon transverse momentum (p_T) thresholds of 4 or 6 GeV and pseudorapidity coverage of $|\eta| < 2.4$. Di-muon vertex reconstruction is also utilized.

2. CP violation in the $B^0_s \rightarrow J/\psi \phi$ decay

The occurrence of CP violation in the B^0_s system is due to interference between direct decays and decays with $B^0_s - \bar{B}^0_s$ mixing to a final state accessible to both B^0_s and \bar{B}^0_s, such as $J/\psi \phi$. The CP asymmetry is represented by the weak phase difference ϕ_s between the $B^0_s - \bar{B}^0_s$ mixing amplitude and the $b \rightarrow c \bar{c} s$ decay amplitude. In the Standard Model, ϕ_s is predicted to be small and is related to elements of the CKM matrix [2]:

$$\phi_s \approx -2\beta_s = 2\arg \left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right) = -0.0363^{+0.0016}_{-0.0015} \text{ rad.} \quad (2.1)$$

The keen interest in $B^0_s \rightarrow J/\psi \phi$ is because of the possible new physics contribution that may exist within ϕ_s, which can therefore be expressed as the sum of its SM and NP components:

$$\phi_s = \phi_s^{SM} + \phi_s^{NP}. \quad (2.2)$$

Precise measurements of ϕ_s performed by LHC experiments have already constrained this new physics contribution, but more precision is still needed to test the SM and evaluate ϕ_s^{NP}.

The results of the $B^0_s \rightarrow J/\psi \phi$ analysis using 4.9 fb$^{-1}$ of integrated luminosity collected by ATLAS in 2011 at $\sqrt{s} = 7$ TeV were published in 2014 [3]. The measured values of ϕ_s and the width difference $\Delta \Gamma_s$ were:

$$\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.05 \text{ (syst.) \ rad.} \quad (2.3)$$

$$\Delta \Gamma_s = 0.053 \pm 0.21 \text{ (stat.)} \pm 0.010 \text{ (syst.) \ ps}^{-1}. \quad (2.4)$$

The more recent analysis of the 14.3 fb$^{-1}$ of integrated luminosity collected in 2012 at $\sqrt{s} = 8$ TeV was released by the ATLAS collaboration in January 2016 [4]. In addition to the increased data sample, this analysis included a number of improvements over the 2011 analysis.

The $B^0_s \rightarrow J/\psi \phi$ candidates were selected by fitting the four track combinations (two muon tracks and two hadronic tracks) to a common vertex. The muon tracks were required to pass the trigger thresholds of $p_T > 4$ or 6 GeV and $\eta < 2.4$. The hadronic tracks were required to be oppositely charged and have $p_T > 1$ GeV and $\eta < 2.5$. All selection criteria are independent of the B^0_s lifetime. A total of 375987 B^0_s candidates were selected with $5.15 < m(J/\psi \phi) < 5.65$. The
number of signal candidates was estimated to be 74900 ± 400, which is approximately 3.5 times that of the sample used in the 2011 analysis.

Since the measured effect in the $B_s^0 \rightarrow J/\psi\phi$ analysis is due to $B_s^0 - \bar{B}_s^0$ mixing, it is important to tag the initial flavour of the B_s^0 or \bar{B}_s^0 meson. Opposite side flavour tagging is used in ATLAS. The flavour tagging algorithm is calibrated using $B^+ \rightarrow J/\psi K^+$ events. Three flavour tagging methods are used: opposite side muon tagging, opposite side electron tagging and jet charge tagging. The jet charge tag uses the jet with largest value of b-tagging in the event, excluding the B^0_s decay. The tagging variable is given by:

$$Q = \frac{\sum_i q_i (p_i^T)^k}{\sum_i (p_i^T)^k},$$

(2.5)

where q_i and p_i^T are, respectively, the charge and transverse momentum of track i. For muon (electron) tagging, $k = 1.1$ (1.0) and the sum is over tracks within a cone of $\Delta R < 0.5$ around the muon (electron). For jet charge tagging, $k = 1.1$ and the sum is over all tracks in the jet.

An unbinned maximum likelihood fit is used to extract the values of the physical parameters of the $B^0_s \rightarrow J/\psi\phi$ decay. The information used by the fit includes several variables describing the $B^0_s \rightarrow J/\psi\phi$ candidates including the reconstructed mass, transverse momentum, proper decay time, the measured proper decay time uncertainty, transversity angles and flavour tagging value. The maximum likelihood fit of the 8 TeV data sample gives the following results for ϕ_s and $\Delta \Gamma_s$:

$$\phi_s = -0.123 \pm 0.089 \text{ (stat.)} \pm 0.041 \text{ (syst.) rad.}$$

(2.6)

$$\Delta \Gamma_s = 0.096 \pm 0.013 \text{ (stat.)} \pm 0.007 \text{ (syst.) ps}^{-1}.$$

(2.7)

The results from the 7 TeV and 8 TeV data samples are consistent and are combined:

$$\phi_s = -0.098 \pm 0.084 \text{ (stat.)} \pm 0.040 \text{ (syst.) rad.}$$

(2.8)

$$\Delta \Gamma_s = 0.083 \pm 0.011 \text{ (stat.)} \pm 0.007 \text{ (syst.) ps}^{-1}.$$

(2.9)

Figure 1 shows the likelihood contours in the $\phi_s - \Delta \Gamma_s$ plane for the 7 TeV and 8 TeV analyses separately and combined.

3. Measurement of the relative width difference of the $B^0 - \bar{B}^0$ system

The relative value of the $B^0 - \bar{B}^0$ width difference $\Delta \Gamma_d/\Gamma_d$ is reliably predicted in the Standard Model [5]:

$$\Delta \Gamma_d/\Gamma_d = (0.42 \pm 0.08) \times 10^{-2}$$

(3.1)

It has been shown [6] that a relatively large variation of $\Delta \Gamma_d/\Gamma_d$ due to a possible new physics contribution would not contradict other existing SM results. A precise measurement of $\Delta \Gamma_d/\Gamma_d$ would therefore provide a stringent test of the underlying theory, complementary to other searches.

The current experimental uncertainty of $\Delta \Gamma_d/\Gamma_d$ is much larger than the SM central value, which prevents a meaningful test of the SM prediction. Furthermore, the measurements of $\Delta \Gamma_d/\Gamma_d$ made by Belle [7] and LHCb [8] differ by more than 1.5 standard deviations. Therefore, more precise measurements of $\Delta \Gamma_d/\Gamma_d$ are needed to establish its value and perform an important test of the SM. The measurement of $\Delta \Gamma_d/\Gamma_d$ was performed by the ATLAS collaboration using the methods described below. The full details of this analysis are given in the corresponding paper [9].
Lifetime, mixing and CPV in ATLAS

Malcolm Skinner

Figure 1: Likelihood contours in the $\phi_s - \Delta \Gamma_s$ plane for (a) the separate results and (b) the combined results from the $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV analyses [4]. The blue line shows the 68% likelihood contour, while the red dotted line shows the 95% likelihood contour (statistical errors only).

The untagged time-dependent decay rate of B^0 meson into a final state f is given by:

$$\Gamma(f,t) \propto e^{-\Gamma_d t} \left[\cosh \frac{\Delta \Gamma_d t}{2} + A_p A_{CP}^{\text{dir}} \cos(\Delta m_d t) + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_d t}{2} + A_p A_{CP}^{\text{mix}} \sin(\Delta m_d t) \right]. \tag{3.2}$$

In this expression, Γ_d and Δm_d are respectively the mean width and mass difference of the $B^0 - \bar{B}^0$ system. The parameters A_{CP}^{dir}, $A_{\Delta \Gamma}$ and A_{CP}^{mix} depend on the final state f. The abbreviations “dir” and “mix” stand for “direct” and “mixing”. By definition, $|A_{CP}^{\text{dir}}|^2 + |A_{\Delta \Gamma}|^2 + |A_{CP}^{\text{mix}}|^2 = 1$. The final states considered in this analysis were $J/\psi K_S$ and $J/\psi K^*_{0}$. The J/ψ is reconstructed using the decay $J/\psi \rightarrow \mu^+ \mu^-$. The K_S and K^*_{0} are reconstructed using the $K_S \rightarrow \pi^+ \pi^-$ and $K^*_{0} \rightarrow K^+ \pi^-$ decay modes. For the $J/\psi K^*_{0}$ (\bar{K}^*_{0}) final state, $A_{CP}^{\text{dir}} = +1 (-1)$, $A_{\Delta \Gamma} = 0$, $A_{CP}^{\text{mix}} = 0$. For the $J/\psi K_S$ channel, $A_{CP}^{\text{dir}} = 0$, $A_{\Delta \Gamma} = \cos 2\beta$, $A_{CP}^{\text{mix}} = -\sin 2\beta$, where β is the Unitarity Triangle angle measured as $\sin 2\beta = 0.679 \pm 0.020$ [10]. A_p is the production asymmetry of B^0 and \bar{B}^0 in ATLAS.

The value of $\Delta \Gamma_d/\Gamma_d$ is determined by measuring the experimental ratio of the proper decay length (L^B_{prop}) distributions of the two decay modes. The sensitivity to $\Delta \Gamma_d/\Gamma_d$ comes from $\Gamma(J/\psi K_S, L^B_{\text{prop}})$ while $\Gamma(J/\psi K^*_{0}, L^B_{\text{prop}})$ provides the normalization, which cancels the factor of $e^{-\Gamma_d t}$, increasing the sensitivity to $\Delta \Gamma_d/\Gamma_d$. This method also helps to reduce some of the systematic uncertainties.

The proper decay length distribution is obtained by first dividing the range of L^B_{prop} between -0.3 and 6.0 mm into ten bins. In each bin, distributions of the invariant mass of the $J/\psi K_S$ and $J/\psi K^*_{0}$ candidates are produced and the number of signal $B^0 \rightarrow J/\psi K_S$ and $\bar{B}^0 \rightarrow J/\psi K^*_{0}$ candidates in each bin is determined by a fit to these distributions. The total number of $B^0 \rightarrow J/\psi K_S$ decays is 28170 ± 250 in the 7 TeV data sample and 110830 ± 520 in the 8 TeV data sample.
The total number of $B^0 \rightarrow J/\psi K^{*0}$ candidates is 129 200 ± 900 in the 7 TeV data sample and 555 800 ± 1900 in the 8 TeV sample.

The ratio of the number of B^0 candidates in the two channels in each L^B_{prop} bin gives the experimental ratio of proper decay lengths $R_{\text{uncor}}(L^B_{\text{prop}})$. This ratio must be corrected to account for the difference in reconstruction efficiencies of the $B^0 \rightarrow J/\psi K_S$ and $B^0 \rightarrow J/\psi K^{*0}$ channels. This difference exists because the hadronic tracks in the $B^0 \rightarrow J/\psi K_S$ decay come from a displaced $K_S \rightarrow \pi\pi$ vertex, while all four tracks from the $B^0 \rightarrow J/\psi K^{*0}$ decay come from a single vertex. This difference is the largest source of experimental bias in $R_{\text{uncor}}(L^B_{\text{prop}})$ and it can be assessed only with Monte Carlo simulation. The ratio of reconstruction efficiencies in MC in each L^B_{prop} bin is determined:

$$R_{\text{un}} = \frac{\epsilon_i(J/\psi K_S, L^B_{\text{prop}})}{\epsilon_i(J/\psi K^{*0}, L^B_{\text{prop}})}.$$

The ratio R_{un} is divided by R_{eff} to obtain the corrected ratio R_{cor}:

$$R_{\text{cor}}(L^B_{\text{prop}}) = \frac{R_{\text{un}}(L^B_{\text{prop}})}{R_{\text{eff}}(L^B_{\text{prop}})}.$$

The $B^0 \rightarrow \bar{B}^0$ production asymmetry is measured from the charge asymmetry of the $B^0 \rightarrow J/\psi K^{*0}$ decay, which is measured as a function of L^B_{prop}. The charge asymmetry has two contributions: the detector asymmetry A_{det} and the production asymmetry A_P which should oscillate with L^B_{prop}. The values of A_{det} and A_P measured by the ATLAS experiment using data obtained at 7 and 8 TeV are:

$$A_{\text{det}} = (+1.33 \pm 0.24 \pm 0.30) \times 10^{-2}.$$ \hspace{1cm} (3.4)

$$A_P = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}.$$ \hspace{1cm} (3.5)

The first uncertainty is statistical and the second is due to uncertainties in the mistag fraction of K^{*0} and \bar{K}^{*0} and in the value of $|q/p|$.

The corrected ratio of proper decay lengths $R_{\text{cor}}(L^B_{\text{prop}})$ is fitted by the expected number of events in each channel, in each bin. The fitted distributions of $R_{\text{cor}}(L^B_{\text{prop}})$ for the 7 and 8 TeV data samples are shown in Fig. 2. The values of $\Delta \Gamma_d/\Gamma_d$ at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV are obtained separately:

$$\Delta \Gamma_d/\Gamma_d = (-2.8 \pm 2.2 \text{ (stat.)} \pm 1.7 \text{ (syst.)}) \times 10^{-2} \quad [\sqrt{s} = 7 \text{ TeV}].$$ \hspace{1cm} (3.6)

$$\Delta \Gamma_d/\Gamma_d = (+0.8 \pm 1.3 \text{ (stat.)} \pm 0.8 \text{ (syst.)}) \times 10^{-2} \quad [\sqrt{s} = 8 \text{ TeV}].$$ \hspace{1cm} (3.7)

The results from the two data samples are consistent and are combined:

$$\Delta \Gamma_d/\Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$$ \hspace{1cm} (3.8)

4. Conclusions

The measurement of CP violation in the $B^0 \rightarrow J/\psi \phi$ using data collected by the ATLAS experiment during Run 1 of the LHC is consistent with measurements by other experiments. It also agrees with the SM prediction. There is, however, still room for new physics in CP violation in this channel.

The value of $\Delta \Gamma_d/\Gamma_d$ obtained by ATLAS during LHC Run 1 is currently the most precise measurement of this quantity. The result agrees with the SM prediction. It is also consistent with measurements performed by other experiments.
Figure 2: Efficiency-corrected ratio of the observed decay length distributions, $R_{\text{cor}}(L_{\text{prop}}^B)$ for the (a) $\sqrt{s} = 7$ TeV and (b) $\sqrt{s} = 8$ TeV data samples [9]. The normalisation of the two data sets is arbitrary. The full line shows the fit of $R_{\text{cor}}(L_{\text{prop}}^B)$. The error bands correspond to uncertainties in $\Delta\Gamma_d/\Gamma_d$ determined by the fit.

References

[4] ATLAS Collaboration, Measurement of the CP-violating phase ϕ_s and the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi\phi$ decays in ATLAS, arXiv:1601.03297 [hep-ex].

