

B decays to open charm

Susan Haines**

University of Cambridge E-mail: haines@hep.phy.cam.ac.uk

Studies of *B* meson decays to states involving open charm mesons in data recorded by the LHCb experiment have resulted in first observations of several new decay modes, including $B_s^0 \rightarrow D_s^{*\mp} K^{\pm}$, $B_s^0 \rightarrow \overline{D}^0 K_s^0$ and $B^+ \rightarrow D^+ K^+ \pi^-$ decays. An upper limit has been placed on the branching fraction of $B_s^0 \rightarrow \overline{D}^0 f_0(980)$ decays. Measurements of other branching fractions, such as those of $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ decays, are the most precise to date. Additionally, amplitude analyses of $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$ and $B^0 \rightarrow \overline{D}^0 K^+ \pi^-$ decays have been performed, alongside the first *CP* violation analysis using the Dalitz plot of $B^0 \rightarrow DK^+ \pi^-$ decays.

16th International Conference on B-Physics at Frontier Machines 2-6 May 2016 Marseille, France

*Speaker. [†]On behalf of the LHCb collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Measurement of the $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ branching fractions

The branching fractions of $B_s^0 \to D_s^{(*)+} D_s^{(*)-}$ decays¹ provide an important contribution to the inclusive branching fraction for $b \to c\bar{c}s$ quark transitions. Precise measurements of the branching fractions are therefore vital, allowing model-independent searches for physics beyond the Standard Model to be performed [1]. These measurements can also aid the understanding of hadronisation effects in B_s^0 meson decays via the $b \to c\bar{c}s$ transition. Measurements of the branching fractions have been made using data recorded at LHCb [2], giving the most precise results to date,

$$\begin{aligned} \mathscr{B}(B^0_s \to D^{(*)+}_s D^{(*)-}_s) &= (3.05 \pm 0.10 \pm 0.20 \pm 0.34)\%, \\ \mathscr{B}(B^0_s \to D^{*\pm}_s D^{\mp}_s) &= (1.35 \pm 0.06 \pm 0.09 \pm 0.15)\% \text{ and} \\ \mathscr{B}(B^0_s \to D^{*+}_s D^{*-}_s) &= (1.27 \pm 0.08 \pm 0.10 \pm 0.14)\%, \end{aligned}$$

where the first uncertainties are statistical, the second are systematic and the third arise from the uncertainty on the branching fraction of the normalisation decay $B^0 \rightarrow D_s^+ D^-$.

2. First observation and measurement of the branching fraction for the decay $B_s^0 \rightarrow D_s^{*\mp} K^{\pm}$

The decay $B_s^0 \to D_s^{*\mp} K^{\pm}$ has been observed for the first time, using data collected at the LHCb experiment [3]. Its branching fraction relative to that for $B_s^0 \to D_s^{*-} \pi^+$ decays has been measured to be $\mathscr{B}(B_s^0 \to D_s^{*\mp} K^{\pm})/\mathscr{B}(B_s^0 \to D_s^{*-} \pi^+) = 0.068 \pm 0.005^{+0.003}_{-0.002}$, where the first uncertainty is statistical and the second is systematic. The measured value of the branching fraction ratio is consistent with theoretical predictions [4]. In future, $B_s^0 \to D_s^{*\mp} K^{\pm}$ decays could be used to measure the weak phase γ .

3. Observation of $B_s^0 \to \overline{D}^0 K_s^0$ and evidence for $B_s^0 \to \overline{D}^{*0} K_s^0$ decays

Using data recorded at LHCb, the decay $B_s^0 \to \overline{D}^0 K_s^0$ has been observed for the first time, and evidence of the decay $B_s^0 \to \overline{D}^{*0} K_s^0$ has been found [5]. The measured branching fractions are

$$\mathscr{B}(B^0_s \to \overline{D}^0 \overline{K}^0) = (4.3 \pm 0.5 \pm 0.3 \pm 0.3 \pm 0.6) \times 10^{-4} \text{ and}$$
$$\mathscr{B}(B^0_s \to \overline{D}^{*0} \overline{K}^0) = (2.8 \pm 1.0 \pm 0.3 \pm 0.2 \pm 0.4) \times 10^{-4},$$

where the first uncertainties are statistical, the second are systematic, the third are due to the ratio of fragmentation fractions (f_s/f_d) and the fourth arise from the uncertainty on the branching fraction of the normalisation decay $B^0 \to \overline{D}^0 K_S^0$. These values are consistent with theoretical predictions [6]. The normalisation decay is itself of interest because it could be used to measure γ [7], while $B_s^0 \to \overline{D}^{(*)0} K_S^0$ decays offer sensitivity to the B_s^0 meson mixing phase ϕ_s [8].

4. Search for the decay $B_s^0 \rightarrow \overline{D}^0 f_0(980)$

A search for $B_s^0 \to \overline{D}^0 f_0(980)$ decays has been performed using LHCb data [9]. Measurements of the relative production of scalar mesons in $B_{(s)}^0$ meson decays provide insight into their substructure [10]; $\mathscr{B}(B^0 \to \overline{D}^0 f_0(980))$ has already been measured [11, 12]. Additionally, $B_s^0 \to \overline{D}^0 f_0(980)$ decays could be used to measure γ , under the assumption that the $f_0(980)$ meson has a predominant $s\bar{s}$ component [7, 13]. No significant signal is observed in the data, so upper limits on the branching fraction of $\mathscr{B}(B_s^0 \to \overline{D}^0 f_0(980)) < 3.1(3.4) \times 10^{-6}$ are set at 90% (95%) confidence level.

¹The inclusion of charge conjugate processes is implied throughout this contribution.

5. First observation of the rare $B^+ \rightarrow D^+ K^+ \pi^-$ decay

Using data collected at LHCb, the decay $B^+ \to D^+ K^+ \pi^-$ has been observed for the first time [14] with a branching fraction of $\mathscr{B}(B^+ \to D^+ K^+ \pi^-) = (5.31 \pm 0.90 \pm 0.48 \pm 0.35) \times 10^{-6}$, where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the normalisation decay $B^+ \to D^- K^+ \pi^+$ [15], respectively. Figure 1 shows the corresponding weighted invariant mass distribution for the candidate decays. The Dalitz plot, also shown in Figure 1, appears to be dominated by broad structures; angular distributions are used to search for quasi-two-body contributions from $B^+ \to D_2^* (2460)^0 K^+$ and $B^+ \to D^+ K^* (892)^0$ decays, but no significant signals are seen and upper limits are therefore set on their branching fractions. In future, decays of the type $B^+ \to D^{**} K^+$, where D^{**} represents an excited state such as $D_2^* (2460)^0$ that can decay to both $D^{\pm} \pi^{\mp}$ and $D\pi^0$, could be used to measure γ [16]².

Figure 1: Weighted invariant mass distribution (left) and background-subtracted Dalitz plot distribution (right) of candidate $B^+ \rightarrow D^+ K^+ \pi^-$ decays [14]. Areas of boxes in the Dalitz plot are proportional to signal yields.

6. Dalitz plot analysis of $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$ decays

An amplitude analysis of the decay $B^0 \to \overline{D}^0 \pi^+ \pi^-$ has been performed using LHCb data [12]. In the phase-space region $m(\overline{D}^0 \pi^{\pm}) > 2.1 \text{ GeV}/c^2$, the branching fraction of the decay is measured to be $\mathscr{B}(B^0 \to \overline{D}^0 \pi^+ \pi^-) = (8.46 \pm 0.14 \pm 0.29 \pm 0.40) \times 10^{-4}$, where the first uncertainty is statistical, the second is systematic and the third arises from the uncertainty on the branching fraction of the normalisation decay $B^0 \to D^*(2010)^- \pi^+$. The Dalitz plot, shown in Figure 2, is analysed using a model with four components for $\overline{D}^0\pi^-$ resonances, four P-wave $\pi^+\pi^-$ resonances, one Dwave $\pi^+\pi^-$ resonance and two alternative model contributions for the $\pi^+\pi^-$ S-wave components. The complex coefficients and fit fractions for the components of the model are determined from the data. The presence of a resonant structure is confirmed at $m(\overline{D}^0\pi^-) \approx 2.8 \text{ GeV}/c^2$, with its spinparity of $J^P = 3^-$ established for the first time; the branching fractions, masses and widths of this resonant structure and the $D_0^*(2400)^-$ and $D_2^*(2460)^-$ resonances are determined. The branching fractions of $B^0 \to \overline{D}^0 h^0 (\to \pi^+ \pi^-)$ decays are also measured, many with the highest precision to date, and several decays are observed for the first time. As well as studying the rich resonant structure of the $B^0 \to \overline{D}^0 \pi^+ \pi^-$ decay, the amplitude analysis is an initial step towards a measurement of the CKM angle β [17]. Furthermore, $B^0 \to \overline{D}^0 \pi^+ \pi^-$ decays offer sensitivity to physics beyond the Standard Model [18].

²Here, and in Section 8, *D* denotes a superposition of the D^0 and \overline{D}^0 states decaying to the same final state (in Section 5, specifically a *CP* eigenstate).

Figure 2: Dalitz plot distribution of candidate $B^0 \to \overline{D}^0 \pi^+ \pi^-$ decays [12]. The red line indicates the kinematic boundary of the Dalitz plot.

7. Amplitude analysis of $B^0 \to \overline{D}^0 K^+ \pi^-$ decays

An amplitude analysis of $B^0 \to \overline{D}^0 K^+ \pi^-$ decays in LHCb data has also been performed [19]. The Dalitz plot is analysed using an amplitude model with components for $K^*(892)^0$, $K^*(1410)^0$, $K_2^*(1430)^0$ and $D_2^*(2460)^-$ resonances, a $K\pi$ S-wave component, and $D\pi$ S- and P-wave components. The masses and widths of the $D_0^*(2400)^-$ and $D_2^*(2460)^-$ resonances are measured and are found to be consistent with those determined in the analysis of $B^0 \to \overline{D}^0 \pi^+ \pi^-$ decays described in Section 6; the complex amplitudes and fit fractions for all amplitude model components are also determined.

8. Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \rightarrow DK^+\pi^-$ decays

Using an amplitude model derived from the results of Ref. [19], described in Section 7, the first *CP* violation analysis using the Dalitz plot of $B^0 \to D(\to K^+\pi^-, K^+K^-, \pi^+\pi^-)K^+\pi^-$ decays to measure γ [20] has been performed with data recorded at LHCb [21]. Due to the ability to exploit interference between different contributions to the decay, this method obtains additional sensitivity compared to the quasi-two-body analysis, where only the $K^*(892)^0$ resonance region of the Dalitz plot is used. No significant *CP* violation effect is observed; constraints are placed on γ using the $B^0 \to DK^*(892)^0$ contribution to the decay, with no value of γ excluded at 95% confidence level, as shown in Figure 3. Hadronic parameters required to determine γ from quasi-two-body analyses of $B^0 \to DK^*(892)^0$ decays are also measured. These measurements provide important input to the determination of γ from a combination of $B \to DK$ analyses using LHCb data [22].

9. Conclusions and prospects

Many recent studies of *B* meson decays to open charm have been performed using data recorded by the LHCb experiment, resulting in first observations of several decay modes and world-best measurements of others. There are also excellent prospects for the future use of some of these decays for *CP* violation measurements, including measurements of the CKM angles γ and β . Studies of further decay modes and analysis updates to include new data collected at the LHCb experiment will provide additional and improved measurements in the near future.

Figure 3: Constraints on γ from the $B^0 \to DK^*(892)^0$ contribution to $B^0 \to DK^+\pi^-$ decays [21].

Acknowledgement

The speaker expresses her gratitude for the generous support of the Leverhulme Trust in funding her participation in the conference.

References

- [1] F. Krinner, A. Lenz, T. Rauh, *The inclusive decay* $b \rightarrow c\overline{c}s$ *revisited*, *Nucl. Phys. B* 876 (2013) 31 [arXiv:1305.5390]
- [2] LHCb collaboration, Measurement of the $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ branching fractions, Phys. Rev. D 93 (2016) 092008 [arXiv:1602.07543]
- [3] LHCb collaboration, *First observation and measurement of the branching fraction for the decay* $B_s^0 \rightarrow D_s^{*\mp} K^{\pm}$, *JHEP* **06** (2015) 130 [arXiv:1503.09086]
- [4] K. De Bruyn et al., *Exploring* $B_s \to D_s^{(*)\pm} K^{\mp}$ decays in the presence of a sizable width difference $\Delta \Gamma_s$, *Nucl. Phys. B* **868** (2013) 351 [arXiv:1208.6463]
- [5] LHCb collaboration, Observation of $B_s^0 \to \overline{D}^0 K_S^0$ and evidence for $B_s^0 \to \overline{D}^{*0} K_S^0$ decays, Phys. Rev. Lett. **116** (2016) 161802 [arXiv:1603.02408]
- [6] P. Colangelo, R. Ferrandes, Model independent analysis of a class of \overline{B}_s^0 decay modes, Phys. Lett. B 627 (2005) 77 [arXiv:hep-ph/0508033]; C.-K. Chua, W.-S. Hou, Rescattering effects in $\overline{B}_{u,d,s} \rightarrow DP, \overline{D}P$ decays, Phys. Rev. D 77 (2008) 116001 [arXiv:0712.1882]; C.-W. Chiang, E. Senaha, Updated analysis of two-body charmed B meson decays, Phys. Rev. D 75 (2007) 074021 [arXiv:hep-ph/0702007]
- [7] M. Gronau et al., Using untagged $B^0 \rightarrow DK_S$ to determine γ , Phys. Rev. D 69 (2004) 113003 [arXiv:hep-ph/0402055]
- [8] R. Fleischer, New, efficient and clean strategies to explore CP violation through neutral B decays, Phys. Lett. B 562 (2003) 234 [arXiv:hep-ph/0301255]
- [9] LHCb collaboration, Search for the decay $B_s^0 \rightarrow \overline{D}^0 f_0(980)$, JHEP **08** (2015) 005 [arXiv:1505.01654]
- [10] R. Fleischer, R. Knegjens, G. Ricciardi, Anatomy of $B^0_{s,d} \rightarrow J/\psi f_0(980)$, Eur. Phys. J. C **71** (2011) 1832 [arXiv:1109.1112]; S. Stone, L. Zhang, Use of $B \rightarrow J/\psi f_0$ decays to discern the $q\overline{q}$ or tetraquark nature of scalar mesons, Phys. Rev. Lett. **111** (2013) 062001 [arXiv:1305.6554]

- [11] Belle collaboration, Study of $\overline{B}^0 \rightarrow D^0 \pi^+ \pi^-$ decays, Phys. Rev. D 76 (2007) 012006 [arXiv:hep-ex/0611054]
- [12] LHCb collaboration, *Dalitz plot analysis of* $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$ *decays*, *Phys. Rev. D* **92** (2015) 032002 [arXiv:1505.01710]
- [13] M. Gronau, D. London, *How to determine all the angles of the unitarity triangle from* $B^0 \rightarrow DK_S^0$ and $B_s^0 \rightarrow D\phi$, *Phys. Lett. B* **253** (1991) 483; M. Gronau et al., *Enhanced effects on extracting* γ *from untagged* B^0 and B_s^0 decays, *Phys. Lett. B* **649** (2007) 61 [arXiv:hep-ph/0702011]; S. Nandi, D. London, $B_s(\overline{B}_s) \rightarrow D_{CP}^0 K \overline{K}$: detecting and discriminating new physics in $B_s \overline{B}_s$ mixing, *Phys. Rev. D* **85** (2012) 114015 [arXiv:1108.5769]; W. Wang, *Determining CP-violation angle* γ with *B decays into a scalar/tensor meson, Phys. Rev. D* **85** (2012) 051301 [arXiv:1110.5194]
- [14] LHCb collaboration, *First observation of the rare* $B^+ \rightarrow D^+K^+\pi^-$ *decay*, *Phys. Rev. D* **93** (2016) 051101(R) [arXiv:1512.02494]
- [15] LHCb collaboration, *First observation and amplitude analysis of the* $B^- \rightarrow D^+ K^- \pi^-$ *decay*, *Phys. Rev.* D **91** (2015) 092002 [arXiv:1503.02995]
- [16] N. Sinha, *Determining* γ using $B \rightarrow D^{**}K$, *Phys. Rev. D* **70** (2004) 097501 [arXiv:hep-ph/0405061]
- [17] J. Charles et al., $B_d^0(t) \rightarrow DPP$ time-dependent Dalitz plots, CP-violating angles 2β , $2\beta + \gamma$, and discrete ambiguities, Phys. Lett. B **425** (1998) 375 [arXiv:hep-ph/9801363]; T. Latham, T. Gershon, A method of measuring $cos(2\beta)$ using a time-dependent Dalitz plot analysis of $B^0 \rightarrow D_{CP}\pi^+\pi^-$, J. Phys. G **36** (2009) 025006 [arXiv:0809.0872]; BABAR collaboration, Measurement of the time-dependent CP asymmetry in $B^0 \rightarrow D_{CP}^{(*)}h^0$ decays, Phys. Rev. Lett. **99** (2007) 081801 [arXiv:hep-ex/0703019]; BABAR collaboration, Measurement of $cos(2\beta)$ in $B^0 \rightarrow D^{(*)}h^0$ decays with a time-dependent Dalitz plot analysis of $D \rightarrow K_S^0\pi^+\pi^-$, Phys. Rev. Lett. **99** (2007) 231802 [arXiv:0708.1544]; Belle collaboration, Measurement of the quark mixing parameter $cos(2\phi_1)$ using time-dependent Dalitz analysis of $\overline{B}^0 \rightarrow D[K_S^0\pi^+\pi^-]h^0$, Phys. Rev. Lett. **97** (2006) 081801 [arXiv:hep-ex/0605023]
- [18] Y. Grossman, M. P. Worah, *CP asymmetries in B decays with new physics in decay amplitudes, Phys.* Lett. B 395 (1997) 241 [arXiv:hep-ph/9612269]; R. Fleischer, *CP violation and the role of electroweak penguins in nonleptonic B decays, Int. J. Mod. Phys. A* 12 (1997) 2459 [arXiv:hep-ph/9612446]; D. London, A. Soni, *Measuring the CP angle β in hadronic b → s penguin decays, Phys. Lett. B* 407 (1997) 61 [arXiv:hep-ph/9704277]; M. Ciuchini et al., *CP violating B decays in the Standard Model and Supersymmetry, Phys. Rev. Lett.* 79 (1997) 978 [arXiv:hep-ph/9704274]
- [19] LHCb collaboration, Amplitude analysis of $B^0 \rightarrow \overline{D}^0 K^+ \pi^-$ decays, Phys. Rev. D 92 (2015) 012012 [arXiv:1505.01505]
- [20] T. Gershon, On the measurement of the unitarity triangle angle γ from $B^0 \rightarrow DK^{*0}$ decays, Phys. Rev. D **79** (2009) 051301(R) [arXiv:0810.2706]; T. Gershon, M. Williams, Prospects for the measurement of the unitarity triangle angle γ from $B^0 \rightarrow DK^+\pi^-$ decays, Phys. Rev. D **80** (2009) 092002 [arXiv:0909.1495]
- [21] LHCb collaboration, Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \rightarrow DK^+\pi^-$ decays, Submitted to Phys. Rev. Lett. [arXiv:1602.03455]
- [22] S.-F. Cheung, these proceedings; LHCb collaboration, *Measurement of the CKM angle* γ *from a combination of B* \rightarrow *DK analyses, LHCb-CONF-2016-001* (2016)