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Several experiments observed deviations from the Standard Model (SM) in the flavour sector:
LHCb found a 4 − 5σ discrepancy compared to the SM in b → sµ+µ− transitions (recently
supported by an Belle analysis) and CMS reported a non-zero measurement of h → µτ with a
significance of 2.4σ . Furthermore, BELLE, BABAR and LHCb founds hints for the violation
of flavour universality in B → D(∗)τν . In addition, there is the long-standing discrepancy in the
anomalous magnetic moment of the muon. Interestingly, all these anomalies are related to muons
and taus, while the corresponding electron channels seem to be SM like. This suggests that these
deviations from the SM might be correlated and we briefly review some selected models providing
simultaneous explanations.
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1. Introduction

The discovery the Higgs at the LHC provided the final ingredient of the SM. While no direct
evidence for physics beyond the SM was found during the first LHC run, there are some inter-
esting indirect hints for new physics (NP) in the flavor sector, mainly in semileptonic decays of
B-mesons, the SM-forbidden decay h → µτ of the Higgs boson and the long-lasting discrepancy
in the anomalous magnetic moment (AMM) of the muon1.

b → s`+`−: Deviations from the SM found by LHCb [6] in the decay B → K∗µ+µ− arise
mainly in an angular observable called P′

5 [7], with a significance of 2–3σ depending on assump-
tions made for the hadronic uncertainties [8–10]. This measurement recently received support from
a (less precise) BELLE measurement [11]. In the decay Bs → φ µ+µ−, LHCb also uncovered [12]
deviations compared to the SM prediction from lattice QCD [13, 14] of 3.5σ significance [9].
LHCb has further observed lepton flavor universality violation (LFUV) in B → K`+`− decays [15]
across the dilepton invariant-mass-squared range 1GeV2 <m2

`` < 6GeV2. Here, the measured ratio
branching fraction ratio R(K) = Br[B→Kµ+µ−]

Br[B→Ke+e−] disagrees with the theoretically clean SM prediction
by 2.6σ . Combining these observables with other b → s transitions, it is found that NP is preferred
over the SM by 4–5σ [16–18]. Interestingly, assuming NP in muons only but not in electrons gives
a better fit than assuming lepton flavour universality.

B → D(∗)τντ : Hints for lepton flavour universality violation (LFUV) in these modes were
observed first by the BaBar collaboration [19] in 2012. These measurements have been con-
firmed by BELLE [20, 21] and also LHCb has remeasured B → D∗τντ [22]. For the ratio R(X)≡
Br[B → Xτντ ]/Br[B → X`ν`], the current HFAG average [23] of these measurements is R(D)exp =

0.397± 0.040± 0.028 , R(D∗)exp = 0.316± 0.016± 0.010 . Comparing these results to the SM
predictions [24] RSM(D) = 0.297±0.017 and RSM(D∗) = 0.252±0.003, there is a combined dis-
crepancy of 4.0σ [23].

h → µτ: In the Higgs sector, CMS has presented results for a search for the lepton-flavor-
violating (LFV) decay mode h→ µτ , with a preferred value [25] Br[h→ µτ] =

(
0.84+0.39

−0.37

)
%. This

is consistent with the less precise ATLAS measurement [26], giving a combined significance for
NP of 2.6σ , since such a decay is forbidden in the SM. However, the first CMS run II measurement,
even though not yet competitive with the run I results, does not show an excess [27]. Nonetheless,
this decay mode is of considerable interest because it hints at LFV in the charged-lepton sector,
whereas up to now, LFV has only been observed in the neutrino sector via oscillations.

aµ : The AMM of the muon aµ ≡ (g− 2)µ/2, provides another motivation for NP connected
to muons. The experimental value of aµ is completely dominated by the Brookhaven experiment
E821 [28] and is given by aexp

µ = (116592091±54±33)×10−11, where the first error is statistical
and the second systematic. The SM prediction is [29] aSM

µ = (116591855± 59)× 10−11, where
almost the entire uncertainty is due to hadronic effects. This amounts to a discrepancy between the
SM and experimental values of ∆aµ = aexp

µ −aSM
µ = (236±87)×10−11 , i.e. a 2.7σ deviation2.

1We do not discuss the anomaly in ε ′/ε [1, 2] here for which possible solutions include Z′ bosons [3, 4] or the
MSSM [5].

2Less conservative estimates even lead to discrepancies up to 3.6σ in aµ
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Figure 1: Left: Allowed regions in the mZ′/g′–sin(θR) plane: the horizontal stripes correspond to h → µτ

(1σ ) for tanβ = 85, 50, 25 and cos(α −β ) = 0.2, (light) blue stands for (future) τ → 3µ limits at 90% C.L.
The gray regions are excluded by NTP or Bs–Bs mixing in combination with the 1σ range for C9. θR is the
tau-mu mixing angle. For details see Ref. [30]. Right: Allowed regions in the αµτ –αsb plane from B → Kνν̄

(yellow), R(D∗) (red) and b → sµ+µ− (blue) for Λ = 1TeV and λ (3) =−0.5 (left plot), λ (3) =−1 (middle)
and λ (3) =−2 (right). Note that αsb = π/64 roughly corresponds to the angle needed to generate Vcb and that
if λ (3) is positive, R(D∗) and b→ sµ+µ− cannot be explained simultaneously. αµτ (αsb) is the misalignment
angle between the 2nd and 3rd generation in the lepton (quark) sector. For details see Ref. [31].

2. Explanations

b → s`+`−: Here a flavour changing neutral current is required which can be naturally gener-
ated at tree-level by a Z′ vector bosons [30, 34–43] or by leptoquarks [31, 44–48]. However, also
NP contributing via loopa are possible [49, 50].

B → D(∗)τντ : Here a tree-level NP contribution is required in order to generate the desired
effect of the order of 25% compared to the SM. Charged Higgses [32, 51–54] are one possibility,
leading to large effects in the q2 distribution. In addition, leptoquarks provide a valid explana-
tion [31, 47, 48, 50, 55–58] but also charged vector bosons are possible [59].

aµ : NP in b → sµ+µ− should also contribute to the AMM of the muon. Explanations beside
supersymmetry (see for example Ref. [60] for a review) include leptoquarks [50,61,62], new scalar
contributions in two-Higgs-doublet models (2HDM) [32,63,64], and very light Z′ bosons [65,66].

h → µτ: Since the B physics anomalies are related to τ and µ leptons, a connection to h →
µτ seems plausible. As the central value for the h → µτ branching ratio is large, loop effects
are in general not sufficient to generate the desired effect [67]. Furthermore, also adding only
vector-like fermions is not sufficient as the bounds from τ → 3µ and τ → µγ are too stringent [68,
69]. Therefore, introducing additional scalars is the most popular option (see e.g. [30, 33, 67, 69–
72]).
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Figure 2: Left: Allowed regions in the tanβ–v/mτ ε`33 plane from R(D(∗)) and τ → µνν at the 2σ level.
The yellow region is allowed by τ → µνν using the HFAG result for mH = 30GeV and mA = 200GeV,
while the (darker) blue one is the allowed region using the PDG result. The red, orange, green, and magenta
bands correspond to the allowed regions by R(D(∗)) for different values of εu

32. The gray region is excluded
by Z → ττ and τ → eνν . For mH ' mA the allowed regions from τ → µνν would be slightly larger. For
details see Ref. [32]. Right: Correlations between h → τµ and τ → µγ for sinα = 0.2. The couplings
YEL,YLE ,λµL,λµE ,λτL,λτE (see Ref. [33] for the definitions) are scanned in the range 0.5−2 and the masses
of the vector-like leptons ME = ML in the range 1 TeV−3 TeV as well as 0.1v < vφ < 2v. The gray region
is excluded by the current bound on BR(τ → µγ). The horizontal dashed line indicates the experimental
central value of BR(h → τµ).

3. Selected models for simultaneous explanations of anomalies

Multi Higgs Lµ −Lτ models: h → τµ and b → sµ+µ− [30, 39]
Adding to a gauged Lµ − Lτ model with vector like quarks [38] a second Higgs doublet with
Lµ −Lτ charge 2 can naturally give an effect in h → τµ via a mixing among the neutral CP-even
components of the scalar doublets [71]. In this setup a Z′ boson, which can explain the b → sµ+µ−

anomalies, gives sizable effects in τ → 3µ which are potentially observable at LHCb and especially
at BELLE II (see left plot in Fig. 1). One can avoid the introduction of vector-like quarks by
assigning horizontal charges to quarks as well [39]. In order not to violate the bounds from Kaon
and D mixing, the quarks of the first two generations must have the same charges. In this case, the
effects in b → s, b → d and s → d transitions are related in an MFV-like way by CKM elements,
predicting an enhancement in ∆mBs , ∆mBd and εK compared to the SM. Furthermore, as the Z′

couples to light quarks, it has an observable cross section at the LHC.
Leptoquarks: b → sµ+µ− and b → cτν [31]

While in b → cτν both leptoquarks as well as the SM contribute at tree-level, in b → sµ+µ− one
compares a potential tree-level NP contribution to a loop effect3. However, b → cτν involves three
times the third generation (assuming that the neutrino is of tau flavour in order to get interference

3Alternatively, there is one leptoquark representation for which one can explain b → sµ+µ− by a loop effect and
b → cτν at tree-level in the case on anarchic couplings [50] and even explain the AMM of the muon.
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Figure 3: Schematic picture of the implications for new particles from the various anomalies.

with the SM contribution) but b → sµ+µ− only once. This suggests that leptoquarks with a hier-
archical flavour structure, i.e. predominantly coupling to the third generation [73, 74], can explain
simultaneously b→ sµ+µ− and b→ cτν in case of a C9 =−C10 (left-handed quark and lepton cur-
rent) solution for b → sµ+µ−. In this case one predicts sizable effects in B → K(∗)ττ , Bs → τ+τ−

and Bs → µ+µ− below the SM, while the effects in b → sτµ are at most of the order of 10−5 (see
right plot in Fig. 1).

2HDM X: aµ and b → cτν [32]
In a 2HDM of type X, the couplings of the additional Higgses to charged leptons are enhanced
by tanβ . As, unlike for the 2HDM II, this enhancement is not present for quarks, the direct LHC
bounds on H0,A0 → τ+τ− are not very stringent and also b → sγ poses quite weak constraints.
Therefore, the additional Higgses can be light, which, together with the tanβ enhanced couplings
to muons, allows for an explanation of aµ . If one adds a coupling of the lepton-Higgs-doublet to
third generation quarks (εu

32), one can explain b → cτν as well by a charged Higgs exchange. In
case of a simultaneous explanation of aµ and b → cτν (without violating bounds from τ → µνν)
within this model (see left plot of Fig. 2), sizable branching ratios (reaching even the % level)
for t → Hc, with mH ≈ 50− 100GeV and decaying mainly to ττ , are predicted. Again, such a
signature could be observed at the LHC.

Lµ −Lτ flavon model: aµ , h → τµ and b → sµ+µ− [33]
In this model one adds vector-like leptons to the gauged Lµ −Lτ model of Ref. [38]and one can
explain h → τµ via a mixing of the flavon (the scalar which breaks Lµ −Lτ ) with the SM Higgs.
Furthermore, one can account for aµ by loops involving the flavon and vector-like leptons without
violating the τ → µγ bounds as this decay is protected by the Lµ −Lτ symmetry (see right plot of
Fig. 2). Despite the effects already present in the model of Ref. [30], one expects order one effects
in h → µ+µ− detectable with the high luminosity LHC.

4. Conclusions

In these proceedings we reviewed the anomalies in the flavour sector related to charged leptons
together with some of their possible explanations. Interestingly, all anomalies involve muons and/or
taus while the corresponding electron channels seem to agree with the SM predictions. This coher-
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ent picture of lepton flavour (universality) violation4 agrees with the stringent LEP constraints and
suggests that the anomalies could be related, hinting at an unified explanation within a NP model.
In Fig. 3 we show in a schematic way which relations among the anomalies and new particles arise.
Specific NP models can of course include the addition several new particles, potentially explain all
anomalies and predict correlations among them and with other observables or processes detectable
in future experiments.
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