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1. Introduction

Quantum Chromodynamics (QCD) is the fundamental theory describing strong interactions
among partons, i.e. quarks and gluons. Jets and photons production in proton-proton collisions at
the Large Hadron Collider (LHC) at CERN are key processes to test predictions of perturbative
QCD (pQCD) over a wide region in phase space and constraint the parton distribution function
(PDF) or the proton. In addition, they are among the main backgrounds to new physics searches
and therefore needs to be estimated with the highest possible precision to allow discovering the
tiniest deviations between data and theory.

The LHC collaborations, ALICE [1], ATLAS [2], CMS [3] and LHCb [4], performed many
measurements of inclusive jet production, multi-jets production, jet properties and photon and
diphoton production. In the following we will however review the most recent results, which
include new measurements by ATLAS and CMS only.

2. Jet physics

Jets are generally reconstructed with the anti-kt algorithm [5], with different values for the
distance parameter R. ATLAS uses topological clusters [6] of cells in the calorimeter as input
objects. In CMS and LHCb, the particle-flow (PF) event algorithm [7, 8] first reconstructs and
identifies each individual particle with an optimised combination of information from the various
elements of the detector. Next, these PF objects are used as input to the jet reconstruction algo-
rithm. ALICE uses tracks only or tracks plus energy deposits in the Electromagnetic Calorimeter
to reconstruct jets in the regions |η | < 0.9 and |η | < 0.7, respectively [9]. The pileup (PU) of
additional proton-proton interactions produce unwanted calorimetric energy depositions and addi-
tional tracks. Different strategies have been developed to subtract these effect depending on the
jet recontruction. The main experimental difficulties for jet-based measurements are the jet energy
calibration and resolution estimate and the subtraction of pileup effects.

The results are usually compared to fixed-order predictions at NLO precision, complemented
with electroweak (EW) corrections, and to predictions of various Monte Carlo (MC) event gener-
ators that combine leading-order (LO) or next-to-leading-order (NLO) pQCD with the modeling
of parton showers (PS), hadronisation (HAD) and multiparton interactions (MPI). In the case of
fixed-order parton-level calculations, to be compared with measurement, they must be comple-
mented with corrections for nonperturbative (NP) effects that involve the modeling of HAD and
MPI, usually obtained from MC programs.

Measurements of inclusive jet production in proton-proton collisions have been performed at
the LHC with data collected at different centre-of-mass energies, ranging from 2.76 GeV to 13
TeV. Using 13 TeV data collected in 2015, the CMS experiment measured the double-differential
inclusive jet cross section [10] as a function of the jet pT and absolute jet rapidity |y|. The data
samples correspond to an integrated luminosity of 71pb−1. The LHC operated with a 50 ns bunch
spacing and the average number of pileup interactions observed is about 19. Figure 1 shows the
double-differential inclusive jet cross section measurements, presented as a function of pT for seven
|y| ranges, after unfolding for detector effects, using the anti-kt algorithm with R = 0.7 and 0.4,
respectively. The measurements are compared to the predictions from POWHEG [11] matched to
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PYTHIA8 [12] PS. The data are remarkably consistent with the predictions over a wide range of jet
pT from 114GeV up to 2TeV. Results are also compared to the NLOJET++ [13] predictions using

 (GeV)
T

Jet p
200 300 1000 2000

 d
y 

(p
b/

G
eV

)
T

 / 
dp

σ2 d

-310

-110

10

310

510

710

910

1110

1310

1510
)6|y| < 0.5 (x10

)50.5 < |y| < 1.0 (x10
)41.0 < |y| < 1.5 (x10
)31.5 < |y| < 2.0 (x10
)22.0 < |y| < 2.5 (x10
)12.5 < |y| < 3.0 (x10
)03.2 < |y| < 4.7 (x10

PH+P8 CUETM1

 (13 TeV)-1< 71 pb

 R = 0.7
t

Anti-k

CMS

 (GeV)
T

Jet p
200 300 1000 2000

 d
y 

(p
b/

G
eV

)
T

 / 
dp

σ2 d

-310

-110

10

310

510

710

910

1110

1310

1510
)6|y| < 0.5 (x10

)50.5 < |y| < 1.0 (x10
)41.0 < |y| < 1.5 (x10
)31.5 < |y| < 2.0 (x10
)22.0 < |y| < 2.5 (x10
)12.5 < |y| < 3.0 (x10
)03.2 < |y| < 4.7 (x10

PH+P8 CUETM1

 (13 TeV)-1< 71 pb

 R = 0.4
t

Anti-k

CMS

Figure 1: Double-differential inclusive jet cross section as function of jet pT at 13 TeV measured by
CMS [10]. Data (points) and predictions from POWHEG + PYTHIA8 with tune CUETM1 (line) are shown.
Jets are clustered with the anti-kt algorithm with R = 0.7 (left) and 0.4 (right).

the CT14 PDF set [14], corrected for NP and EW effects. The ratios of data over the NLOJET++
predictions are shown in Fig. 2 for the rapidity region |y|< 0.5, but the same trend is observed in all
the rapidity ranges. The relatively poor agreement for R = 0.4 might be due to parton-shower and
soft-gluon resummation contributions, which are missing in fixed-order calculations, or to higher-
order effects.
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Figure 2: Ratio of values measured by CMS [10] to theoretical prediction from NLOJET++ using the CT14
PDF set and corrected for the NP and EW effects. Predictions employing three other PDF sets are also
shown for comparison. Jets are clustered with the anti-kt algorithm with a distance parameter of 0.7 (left)
and 0.4 (right). The error bars correspond to the statistical uncertainties of the data and the shaded bands to
the total experimental systematic uncertainties.

The CMS collaboration has also recently made available new results for the double-differential
inclusive jet cross section at 8 TeV [15] and 2.76 TeV [16]. In the measurement at 8 TeV, the
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ratio to the cross section at 7 TeV is also presented. A good agreement is observed in general
between data and predictions, but for high transverse momentum some discrepancies are present,
in particular in the region 1.0 < |y| < 1.5, as shown in Figure 3. The inclusive jet cross section
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Figure 3: Ratio of double-differential inclusive jet cross sections between
√

s = 8TeV and
√

s = 7TeV
for rapidity bins 1.0 < |y| < 1.5 as measured by CMS [10]. In the top plots the yellow band shows the
total experimental uncertainty, accounting for the correlation between different energies, and the theoretical
prediction for the CT10 PDF set is overlaid. The bottom plot shows the ratio of the measured cross section
ratio to its theoretical prediction, with the experimental uncertainty shown as a full line band, and theoretical
uncertainties as a shaded band.

at 8 TeV is very important for contraining the PDFs of the proton, in particular the gluon one,
as it is shown in Figure 4, where the measurement is combined with the HERA data[17] using
the HERAPDF method [18]. Furthermore the strong coupling constant αS is extracted from the
measurement at 8 TeV, using for the calculation the CT10 NLO PDF set [19], which is found to
provide the best agreement with data. With the entire probed pT range and six different rapidity
bins, the best fitted value is found to be αS(MZ) = 0.1164+0.0060

−0.0043, which is compatible with the
best current world average αS(MZ) = 0.1185± 0.0006 [20]. Figure 5 shows that the running of
αS(Q), measured for nine different values of renormalization scale between 86GeV and 1.5TeV, is
in good agreement with previous experiments and extends the measurement to the highest values
of the renormalization scale.

The ATLAS Collaboration has recently measured the strong coupling constant using the trans-
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Figure 4: Distribution of gluon as a function of x at the starting scale Q2 = 1.9GeV 2, from [10]. The upper
panel shows results of the fit to the HERA data and inclusive CMS jet measurements at 8TeV (shaded band),
and to HERA only (hatched band), with their total uncertainties, as determined by using the HERAPDF
method. In the bottom panels the fractional uncertainties are shown.

Q (GeV)
5 6 7 8 910 20 30 40 50 100 200 300 1000 2000

(Q
)

Sα

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
-0.0043

+0.0060) = 0.1164
z

(MSα = 8TeV, sCMS Incl.Jet, 
 = 8TeVsCMS Incl.Jet, 

 = 7TeVs , 32CMS R
 = 7TeVsCMS Incl.Jet, 

 = 7TeVs,tCMS t
 = 7TeVsCMS 3-Jet Mass, 

D0 Incl.Jet
D0 Angular Correlation
H1
ZEUS

) = 0.1185
z

(MSαWorld Avg 

CMS Preliminary
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Figure 6: The unfolded distribution of the TEEC measured by ATLAS [21], compared with the results of
a fit to pQCD NLO calculations including NP corrections. The green shaded band indicates the uncertainty
on the theoretical predictions, which includes the sum in quadrature of uncertainties associated with scale,
αS, PDF and NP corrections.

verse energy-energy correlation (TEEC) function and its associated azimuthal asymmetry in multi-
jet events at a centre-of-mass energy of 7 TeV [21]. The average transverse momentum of the
two leading jets is required to be larger than 250 GeV. The TEEC distribution is obtained from the
cos∆φi j between any pair of jets i and j, weighted by

wi j =
ETiET j

(∑k ET k)2 ,

where ET is the jet transverse energy and the sum runs over all jets in the event. With respect to
other observables the TEEC is less sensitive to the jet energy scale and resolution, and to PU. The
measured TEEC distribution is shown in Figure 6, after unfolding the effects of the detector. In the
same plot the result of a fit to pQCD NLO calculations from NLOJET++ including NP corrections
is also shown. The measured value of αS(MZ) is

αS(MZ) = 0.1173±0.0010(exp.)+0.0063
−0.0020(scale)±0.0017(PDF)±0.0002(NP)

and it is also in agreement with the world average. This value has been obtained with the CT10
NLO PDF set, which has the largest PDF uncertainty, covering the variations with different PDF
sets.

The ATLAS Collaboration recently studied 4-jets events at 8 TeV [22], exploring many vari-
ables sensitive to the topology and the different energy scales of the event. These observables have
been compared to predictions from several MC generators and from fixed-order NLO calculations.
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The maximum rapidity difference among a jet pair, ∆ymax
2 j , shown in Figure 7, is one of the variables

where some discrepancies are observed. The NLO predictions, BLACKHAT/SHERPA [23, 24] and

max

2j
 y∆

0 2 4

) 
[f

b
/b

in
 w

id
th

]
m

a
x

2
j

 y
∆

 /
 d

(
σ

d

1

10

210

310

410

510

610

710

810
ATLAS

1
  20.3 fb1=8 TeV, 95 pbs

Data

 0.6)×Pythia 8 (

 1.4)×Herwig++ (

 1.1)×MadGraph+Pythia (

>100 GeV
(1)

T
p

>250 GeV
(1)

T
p

>400 GeV
(1)

T
p

>550 GeV
(1)

T
p

systematic uncertainty

Total experimental

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

max

2j
 y∆

0 1 2 3 4 5

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

max

2j
 y∆

0 2 4

) 
[f

b
/b

in
 w

id
th

]
m

a
x

2
j

 y
∆

 /
 d

(
σ

d

1

10

210

310

410

510

610

710

810
ATLAS

1
  20.3 fb1=8 TeV, 95 pbs

Data

 0.9)×HEJ (

 1.0)×BlackHat/Sherpa (

 1.0)×NJet/Sherpa (

>100 GeV
(1)

T
p

>250 GeV
(1)

T
p

>400 GeV
(1)

T
p

>550 GeV
(1)

T
p

systematic uncertainty

Total experimental

 PDF) uncertainty⊕NLO (scale 

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

max

2j
 y∆

0 1 2 3 4 5

T
h
e
o
ry

/D
a
ta

0

0.5

1

1.5

2

Figure 7: ATLAS unfolded four-jet differential cross section [22] as a function of ∆ymax
2 j , compared to

different predictions: PYTHIA8, HERWIG++ and MADGRAPH +PYTHIA6 (top), and HEJ, NJET/SHERPA

and BLACKHAT/SHERPA (bottom). The MC and HEJ predictions are multiplied by the factors indicated in
the legend in order to be normalized to the events observed in the data. The left panel shows the full spectra
and the right panel the ratios of the different predictions to the data. The solid band represents the total
experimental systematic uncertainty. The patterned band represents the NLO scale and PDF uncertainties
calculated from NJET/SHERPA. The scale uncertainties for HEJ (not drawn) typically range from -30% to
+50%. The ratio curves are formed by the central values and vertical uncertainty lines resulting from the
propagation of the statistical uncertainties of the predictions and those of the unfolded data spectrum.

NJET/SHERPA [25, 26], are almost always compatible with the data within their theoretical uncer-
tainties. The HEJ [27, 28] all-orders calculation and the multi-leg calculation with up to four par-
tons in the matrix element (ME) generated by MADGRAPH [29] and matched to the PYTHIA6 [30]
PS also provide a good description of the data. The 2→ 2 MC generators PYTHIA8 and HER-
WIG++ [31] describe the data relatively poorly. These results show the need of more sophisticated
calculations in many cases.
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The CMS Collaboration has also recently published new studies of the properties of multi-jets
events at 7TeV [32, 33] and 8 TeV [34]. In Figure 8 the azimuthal decorrelation ∆φdijet between
the two jets with the largest transverse momenta at 8TeV is presented for seven regions of lead-
ing jet transverse momentum pmax

T up to 2.2TeV. The dijet azimuthal decorrelation is caused by
the radiation of additional jets and probes the dynamics of multi-jet production. The results are
compared to calculations in pQCD calculations from NLOJET++ with the CT10 NLO PDF set
for 3-jet production with up to four outgoing partons. These fixed-order calculations provide NLO
predictions for the range of 2π/3 ≤ ∆φdijet < π , corresponding to a final state with at least 3 jets,
and LO predictions for π/2 ≤ ∆φdijet < 2π/3, where at least 4-jets must be present. The predic-
tions are normalized separately in these two region and describe the data well over several order of
magnitude, though they increasingly deviate from data for lower values of ∆φdijet, especially at low
pmax

T . In Figure 9 the ratio of several MC generators predictions to the the data is shown. Similar
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Figure 8: CMS normalized dijet cross section differential in ∆φdijet for seven pmax
T regions, scaled by

multiplicative factors for presentation purposes [34]. The error bars on the data points include statis-
tical and systematic uncertainties. Overlaid on the data (points) are predictions from LO (dashed line;
π/2 ≤ ∆φdijet < 2π/3) and NLO (solid line; 2π/3 ≤ ∆φdijet ≤ π) calculations using the CT10 NLO PDF
set.

conclusions as for the 4-jets analysis performed by ATLAS can be drawn. Event generators with
only two outgoing partons at matrix-element fail to describe the data. This apply also to POWHEG

that has NLO QCD corrections matched to the PYTHIA8 PS. In the case of MADGRAPH +PYTHIA6
from two to four outgoing partons are provided by the ME calculations and are matched to the PS,
providing a very good description of the data down to very low ∆φdijet values.
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Figure 9: Ratios of PYTHIA6, HERWIG++, PYTHIA8, MADGRAPH + PYTHIA6, and POWHEG + PYTHIA8
predictions to the CMS normalized dijet cross section differential in ∆φdijet, for all pmax

T regions [34]. The
solid band indicates the total experimental uncertainty and the error bars on the MC points represent the
statistical uncertainties of the simulated data.

Jets are not only a probe for pQCD or other high transverse momentum processes. They are
also interesting for their properties, which depends mostly on quark fragmentation and hadroni-
sation. An example of this kind of studies is the measurement of charged-particle multiplicity in
jets < ncharge > performed by ATLAS on the 8 TeV data sample [35]. The multiplicity is mea-
sured including charged tracks with pT > 0.5, 2 or 5 GeV, for jets with pT > 50 GeV and up to
1.5 TeV. Results are compared to HERWIG++, PYTHIA6 and PYTHIA8 with different underlying
event tunings, showing that the description of data improves for the most recent tunes. The charged
multiplicity is important to discriminate between quarks- and gluon-initiated jets, being larger in
the case of a gluon jet. For this reason after unfolding the results for detector effects, the < ncharge >

is extracted separately for quark and gluon jets as a function of the jet transverse momentum. Re-
sults are shown in Figure 10 and confirm that this value is larger for gluon jets, as expected, with a
dependence on the jet transverse momentum.

The jet charge is another observable recently measured using 8 TeV data by ATLAS [36] and
CMS [37]. The jet charge is the pT weighted sum of the charge of the particles in a jet. It is defined
as

Qκ =
1

(pT)κ ∑
i

Qi(pi
T)

κ (2.1)

where the sum is over all particles i in the jet with pT > 1 GeV, Qi is the charge of the particle, pi
T is

the particle transverse momentum, and κ is a free parameter. The charge of the leading jet in dijets
events is considered and different values of κ are used: 0.3, 0.5, 0.7 by ATLAS; 0.3, 0.6, 1.0 by
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Figure 10: Jet pT dependence of charged-particle multiplicity, for tracks pT > 0.5 GeV, for quark- and
gluon-initiated jets, measured by ATLAS [35].

CMS. The CMS Collaboration used in addition two alternative definitions of the jet charge based
on transverse and longitudinal momentum of the particles with respect to the jet axis also used. The
full distribution of the jet charge is measured by CMS and unfolded for detector effects, as shown
in Figure 11 for κ = 0.6. The ATLAS collaboration measured instead the first and second moments
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Figure 11: Distribution of the jet charge Qκ (κ = 0.6) measured by CMS [37], compared to MC simulations.
The left plot compare the sum of the contributions in PYTHIA6 and HERWIG++ to data (the flavor breakdown
is carried out in PYTHIA6). The right plot compare the unfolded leading jet charge distribution with PYTHIA6
and HERWIG++ generators. Shaded uncertainty bands include both statistical and systematic effects, added
in quadrature.

of the distributions. Results are shown in Figure 12 compared to MC predictions obtained using
the CT10 NLO or the CTEQ6L1 [38] as the PDF set. The LO prediction agree with data within
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5%, while the NLO predictions are generally 10% below the data. There does not seem to be an
effect from the NLO corrections in POWHEG. This observation is consistent with the expectation
that the PDF and (nearly collinear) fragmentation are responsible for the jet charge distributions.
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Figure 12: The average of the jet charge distribution measured by ATLAS [36] as a function of the jet pT

for κ =0.3, 0.5, and 0.7 for the more central jet using CT10 (left) or CTEQ6L1 (right) as the PDF set. The
crossed lines in the bars on the data indicate the systematic uncertainty and the full extent of the bars is the
sum in quadrature of the statistical and systematic uncertainties.

3. Prompt photon physics

Prompt photons are those produced in the hard process, mainly through the LO process qg→
qγ , and can therefore be used to study the gluon PDF. In addition, they are an important back-
ground to many interesting channel, e.g. Higgs decays into diphotons, and their production needs
to be precisely measured. Furthermore, inclusive prompt photon production is made up of direct
and fragmentation photons: direct photons are produced in the hard process, whereas fragmen-
tation photons are generated in the parton fragmentation process. The dominant background to
prompt photon production are photons originating from light neutral mesons decay (π0,η). The
photon selection is designed to suppress the background from hadron decays, but also to reduce the
fragmentation contribution, which is a less understood non-perturbative process. This is achieved
by applying an isolation requirement.

The photon recontruction and identification starts from a cluster of energy deposits in the
electromagnetic calorimeter (ECAL), supplemented by the informations in the tracker detector. If
there are no tracks pointing to the cluster it is an unconverted photon candidate, while if there are
two tracks coming from a conversion vertex or one track with no hits in the pixel detector it is
a converted photon. Both candidates are kept for the following analyses, which are then tuned
depending on the type.

In ATLAS photons are identified with a likelihood based on nine variables related to the lateral
and longitudinal development of the shower in the LAr sampling ECAL [39]. In CMS the photon
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identification is based on the shape of the electromagnetic shower in the lead tungstate crystal
ECAL [40]. Both experiments apply in addition an isolation requirement to further remove the
background and the fragmentation photons as explained above. The identification with the shower
shape and the isolation are partially uncorrelated and it is possible to extract from data the purity
of the selected photon sample from the distribution in these two variables.

ATLAS recently published the inclusive prompt photon cross-section at 8 TeV [41]. The
measurement is performed for photons with an energy between 25 GeV and 1.5 TeV, and for a
pseudorapidity of up to η = 2.37. Results are shown in Figure 13 together with NLO predictions
from JETPHOX [42]. Figure 14 shows the ratio of the theory predictions to the data: in addition
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Figure 13: Differential cross sections of prompt photons in 8 TeV data measured by ATLAS [41]. JETPHOX

predictions are superimposed. The distributions are scaled by the specified factors to separate them visually.

to JETPHOX, the MC programs PYTHIA and SHERPA are shown. Predictions from JETPHOX with
CT10 PDF set are 20% lower than the data, though compatible within the uncertainty. Results
from SHERPA, with CT10 PDF, and PYTHIA, with CTEQ6L1 PDF, show some significant devia-
tions from the data: SHERPA is better for central photons, while PYTHIA is in good agreement with
data for high |η |. In the case of SHERPA up to four partons can be present in the final state and the
parton shower treats coherently gluon and photon emissions. That means that it is not possible to
distinguish between direct and fragmentation photons. PYTHIA instead does the LO direct produc-
tion in the ME and the fragmentation in the PS. As already noted, none of the two approaches is
able to describe the data in the whole energy and pseudorapidity range.

The CMS Collaboration has measured the differential cross sections for the production of a
photon pair in association with jets at

√
s = 7 TeV [43]. The fraction of prompt diphoton events

in data is extracted from a template fit to the photon isolation distribution. The signal template has
been obtained from the data itself with the “random cone” technique, where the isolation energy
is measured in a region separated from the photon. Several differential observables are studied
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Figure 14: Ratio of theory (PYTHIA, SHERPA and JETPHOX) to ATLAS data for the differential prompt
photon cross sections [41]. The statistical component of the uncertainty in the data is indicated by the
horizontal tick marks whereas the whole error bar corresponds to the combined statistical and systematic
uncertainty. The additional systematic uncertainty arising from the uncertainty in the integrated luminosity
is displayed separately as a dotted line. The total uncertainty on JETPHOX calculations is displayed as a
band.

with inclusive 1-jet and 2-jet selections and results are compared to LO and NLO QCD theoretical
predictions from SHERPA, aMC@NLO [29], and GOSAM [44] event generators. As an example,
the angular correlations between the leading jet and the photons are shown in Figure 15. The
SHERPA and aMC@NLO predictions agree with the data for a large set of differential observables.
The parton-level GOSAM prediction also describes the data well except for the angular correlations
between photons and jets, where discrepancies are observed.

Finally, the ratio of the associated production of a Z/γ∗ or a γ with one or more jets, measured
in proton-proton collisions at 8 TeV center-of-mass energy by CMS [46], has been recently com-
pared to new theoretical calculations in a study of the effect of EW correction [47]. In the limit
of high transverse momentum of the vector boson the effects due to the mass of the Z boson are
small, and the cross section ratio of Z+jets to γ+jets is expected to become constant. Figure 16
compare the data to for events with a vector boson and at least one jet to fixed-order predictions
from SHERPA +OPENLOOPS including both QCD and EW NLO corrections [48, 49]. The agree-
ment of the combined NLO QCD+EW prediction with the CMS data is remarkable over the whole
spectrum. At low transverse momentum NLO QCD corrections to the ratio are relevant due to mass
effects, but sizable EW corrections (of different size for the two processes) alter the shape of the
ratio prediction already much below 1 TeV. These results show the importance of combining NLO
QCD and EW corrections in a unified framework.

4. Conclusions

We reviewed the most recent measurements of inclusive jet production, multi-jet production,
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Figure 15: CMS diphoton differential cross section [43] as a function of the ∆R separation between the
leading jet and the leading (left) or subleading (right) photon. All distributions are normalized to unitary
area.

jet properties and photon and diphoton production in proton-proton collisions at the LHC. These
measurements are important to test pQCD predictions and constraint the PDF of the proton. The
results that have been presented show that event generators are generally in good agreement with
the data. With the increase of the centre-of-mass energy to 13 TeV, however, there are hints that it is
necessary to include higher order QCD and EW corrections to describe the data with the precision
required by the high expected luminosity.
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