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this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-
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actually the leading operators. In addition to those longitudinal and transversal dimension eight
EFT operators, the effects of generic tensor and scalar resonances within simplified models are
considered.

Fourth Annual Large Hadron Collider Physics
13-18 June 2016
Lund, Sweden

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:marco.sekulla@kit.edu
mailto:kilian@physik.uni-siegen.de
mailto:ohl@physik.uni-wuerzburg.de
mailto:juergen.reuter@desy.de


P
o
S
(
L
H
C
P
2
0
1
6
)
0
5
2

Effective Field Theory and Unitarity in Vector Boson Scattering Marco Sekulla

1. Motivation

Run I of the LHC has not only revealed a Standard Model-like Higgs boson [1, 2] together with
measuring its mass and some of its properties and couplings, but also established the scattering
process of electroweak gauge bosons[3, 4, 5] (VBS) as predicted by the Standard Model (SM).
This process gives insights into the nature of the electroweak symmetry breaking (EWSB) sector
and further fundamental properties of the Higgs. In the SM, the electroweak breaking sector is
described as a weakly interacting theory, where the Higgs boson is vastly suppressing the vector
boson scattering process at high center-of-mass energies and the scattering amplitude is dominated
by the transversal vector boson scattering.

Without the Higgs the VBS scattering amplitudes VV → VV , where V is W±,Z, would rise
with s/v2 due to the dominant contribution of scalar Goldstone-boson scattering, which represents
the longitudinal degrees of freedom of the vector boson scattering. The electroweak interactions
would become strongly interacting in the TeV range. However, the initial limits on VBS are rather
weak and only scales close to the pair-production threshold of ∼ 200 GeV are probed. Run II and
III of the LHC and future (high-energy) e+e− colliders will improve the accuracy and provide new
insights in the origin of EWSB. The delicate cancellation between the EW gauge bosons and the
Higgs boson in VBS makes this channel an ideal, yet intricate channel to search for new physics.

The discussion in these proceedings is based on our publications in [6, 7, 8, 9] and is an update
of [10].

2. Effective Field Theory, Perturbative Unitarity and Unitarization

To study new physics in the VBS process generically, we will use the framework of Effective
Field Theories (EFT). A set of higher-dimensional operators extends the SM Lagrangian to quantify
deviations from the SM, which originate from some new physics at a high energy scale Λi as

L = LSM +∑
i

Ci

Λ
d−4
i

Od
i . (2.1)

Here, Ci are the associated Wilson coefficients of the operators. Lacking a possibility to disentangle
both parameters, we introduce the ratio coupling Fi =

Ci
Λ

d−4
i

.

Many different operator bases have been proposed for the electroweak sector, an overview and
also translations between them have been discussed e.g. in [11, 12]. For illustrative purposes, we
study only the subset of operators which purely contribute to the Higgs sector and therefore affect
only the coupling of longitudinal vector bosons and the Higgs boson. This subset of operators
contains OHD as a dim-6 operator, and the two dim-8 operators, OS,0 and OS,1 (cf. eqs. (2.2)–
(2.4)). All of these operators could arise easily in popular scenarios of new physics beyond the
SM (BSM) like Composite Higgs, Little Higgs or Extra Dimensions. The LHC experiments are
studying all three of them to gain sensitivity in various channels like dibosons, tribosons, precision
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Figure 1: pp→W+W+ j j, left: naive EFT results that violate unitarity, QCD contributions ne-
glected. The band describes maximal allowed values, due to unitarity constraints, for the differ-
ential cross section. The lower bound describes the saturation of isospin partial waveA20 and the
upper bound describes the simultaneous saturation of A20 and A22, right : unitarized result. Cuts:
M j j > 500 GeV; ∆η j j > 2.4; p j

T > 20 GeV; |η j|> 4.5.

Higgs data and VBS. The operators are given by

LHD =FHD tr
[

H†H− v2

4

]
· tr
[(

DµH
)†
(DµH)

]
, (2.2)

LS,0 =FS,0 tr
[(

DµH
)† DνH

]
· tr
[
(DµH)† DνH

]
, (2.3)

LS,1 =FS,1 tr
[(

DµH
)† DµH

]
· tr
[
(DνH)† DνH

]
. (2.4)

Due to the unknown microscopic picture of the underlying energy giving rise to these opera-
tors, the validity range of the EFT is also a priori unknown. In this case, the unitarity condition is
used to determine the validity of the EFT.

In the left-hand side of Fig. 1, the cross section for the complete LHC process pp→W+W+ j j
at leading order – computed using the Monte-Carlo generator WHIZARD [18, 19] with CTEQ6L
PDF sets – is shown. The SM curve is compared to three curves for models which contain a single
nonzero coefficient for the three different effective higher-dimensional operators, respectively. For
an indication of the unitarity limits, we have included a quartic Goldstone interaction amplitude
with a constant coefficient aIJ = i in the I = 2 and J = 0,2 isospin and spin channels and recom-
puted the process with this modification. The Goldstone boson scattering amplitudes are very good
approximations to the scattering of longitudinal EW gauge bosons by means of the Goldstone bo-
son equivalence theorem. By projecting the partial waves into their spin and isospin components,
the optical theorem is used to determine the condition for perturbative unitarity in the same way as
in [13]. Further details are listed in [7]. At high invariant mass MVV of the WW -scattering system,
the enhancement the crossection by M8

WW
m8

H
in comparison to the SM due to the dimension eight oper-

ators are dominant. The coefficients of the higher-dimensional operators are chosen within current
LHC bounds. We concentrated to the like-sign WW scattering as this is the cleanest channel at
the LHC with the smallest backgrounds. It only appears in the isospin two channel. In the light
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Figure 2: Geometrical representation: stereographic projection vs Thales projection.

red band, we plotted the unitarity limit by demanding that the isospin partial waves A20 and A22

for isospin two and spin zero and two, respectively, are saturated, i.e. reaching their maximally
allowed value of 32π .

The predictions of the dimension eight operators violate the unitarity limit and become un-
physical in an energy regime, which can be tested at the LHC. Naively, one could introduce a
cut-off to forbid these unphysical events manually (a prescription also partially used by ATLAS
and CMS, known as ’event clipping’). Such a cutoff could also be motivated theoretically by the
argument that these events could have never arisen in a UV-complete theory. However, this leads to
a sharp edge in the distribution (at level of the vector bosons) which does not resemble any sensible
approximation to a UV-complete theory, and furthermore there are also experimental restrictions
for doing so: In case of the W+W+ scattering, the final state includes two neutrinos and the WW
invariant mass cannot be experimentally reconstructed. Other methods to treat this high-energy
regime are by means of so-called form factors which, however, depend on at least two parameters,
the exponent of the momentum dependence in the denominator (the ’multipole’ parameter) and
the cutoff scale which a priori has nothing to do with the scale Λ appearing in front of the Wilson
coefficients.

In order to have a meaningful description that does not depend on any additional parame-
ters, we introduce the T -matrix unitarization scheme (cf. Fig. 2 in terms of the Argand circle,
as described below) as a general extension of the K-matrix unitarization to provide event samples,
which satisfy the unitarity bound. The T-matrix scheme is applicable for cases where the amplitude
has an imaginary part itself already, and is also defined without relying on a perturbative expansion.
For more details cf. [7]. The right-hand side of Fig. 1 shows the damping of the cross sections for
high energies due to the saturation of the amplitudes.

In the first measurement of anomalous quartic gauge couplings in vector boson scattering by
ATLAS [3], the non-linear representation as defined in [6] is used to probe anomalous quartic gauge
couplings α4 and α5,

Lα4 =α4 tr
[
VµVν

]
· tr [VµVν ] , (2.5)

Lα5 =α5 tr
[
VµVµ

]
· tr [VνVν ] . (2.6)
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Lα4 and Lα5 include the subset of couplings of LS,0 and LS,1 excluding all anomalous cou-
plings with at least one Higgs. However, anomalous couplings involving the Higgs can be neglected
in a study of vector boson scattering at the LHC due to the small Yukawa interaction of incoming
quarks and specialized triggers for outgoing vector bosons. Therefore, both parametrization are
equivalent to study anomalous quartic gauge couplings in vector boson scattering processes. Lim-
its on the anomalous couplings α4 and α5 can be directly translated to limits of FS,0 and FS,1, with
or without K/T-matrix unitarization, via

FS,0 = 16
α4

v4 , (2.7a)

FS,1 = 16
α5

v4 . (2.7b)

For example, a conversion of the observed one-dimensional 95% interval in [3] leads with eq. (2.7)
to following observed 95% interval for FS,0 and FS,1:

−590 TeV−4 <FS,0 < 680 TeV−4 for FS,1 = 0 , (2.8a)

−420 TeV−4 <FS,1 < 510 TeV−4 for FS,0 = 0 . (2.8b)

The T-matrix scheme is only one possible extrapolation for high-energy scenarios. All physical
scenarios have to fullfil the unitarity condition which is graphically represented by the Argand
circle. If no new physics is involved in the electroweak sector, the elastic scattering amplitude of
the Standard model will stay at the origin on the bottom of the Argand circle (Fig. 3a). If the EFT
is naively added, amplitudes start to rise and will leave the Argand circle to finally violate unitarity
(cf. Fig. 3b, as there are no new degrees of freedom in the strict EFT, the amplitude can never
develop an imaginary part to return to the Argand circle). To remedy this unphysical behavior
of the amplitude, unitarization prescriptions are introduced to project the amplitude back onto the
Argand circle. T-matrix unitarization saturizes the amplitude, in the sense that it is equivalent to
an infinitely broad resonance at infinity, similarly to a strongly interacting continuum present over
an extended range in momentum space. Practically, it will project the corresponding isospin-spin
amplitude to its maximally allowed absolute value at high energies. Another option to correct the
unphysical EFT prediction is using the form-factor scheme, a possible case of entering the inelastic
regime with additional channels opening up (cf. Fig. 3d). A third approach would be the addition
of explicit resonances (either weakly or strongly coupled), which could be (part of the) origin for
the dim-8 operators (cf. Fig. 3e). Here, the amplitude will ideally fall again beyond the resonance,
but could show a rise again due to continuum contributions or the onset of a further resonance.

3. Resonances and Simplified Models

As the LHC is intended to be a discovery machine, it might be advantageous to assume that a
new resonance or particle might be within the kinematic reach of the machine, especially given the
high amount of luminosity to be collected in runs II and III. In order to be as general as possible
in studying what kind of resonances could show up in vector boson scattering – specific models
would be Two-Higgs double models, including the (N)MSSM, Composite Higgs, Little Higgs (for
limits cf. e.g. [14]), Twin Higgs, etc. – we classify all resonances that can couple to the electroweak
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Figure 3: Possible scenarios for scattering amplitudes respecting the Argand circle.

diboson systems according to their spin and isospin quantum numbers. For simplicity, we neglect
couplings to photons, but of course they are present due to EW gauge invariance. These possible
resonances can be categorized in terms of the approximate SU(2)L× SU(2)R symmetry, which is
a good approximation for weak boson scattering, and the spin. The (0,0) and the (1,1) repre-
sentations of the SU(2)L×SU(2)R are abbreviated as isoscalar and isotensor, respectively. We can
distinguish the resonances for elastic vector boson scattering into an isoscalar scalar σ , an isoscalar
tensor f , an isotensor scalar φ and an isotensor tensor X . The interaction with longitudinal vector
bosons is modeled by the following currents:

Jσ = Fσ tr
[(

DµH
)† DµH

]
, (3.1a)

Jφ = Fφ

((
DµH

)†⊗DµH+
1
8

tr
[(

DµH
)† DµH

])
τ

aa , (3.1b)

Jµν

f = Ff

(
tr
[
(DµH)† DνH

]
− c f

4
gµν tr

[(
DρH

)† DρH
])

, (3.1c)

Jµν

X = FX

[
1
2

(
(DµH)†⊗DνH+(DνH)

†⊗DµH
)
− cX

4
gµν

(
DρH

)†⊗DρH

+
1
8

(
tr
[
(DµH)† DνH

]
− cX

4
gµν tr

[(
DρH

)† DρH
])]

τ
aa . (3.1d)

Here, H= 1
2 (1(v+H)− iwaτa), and τaa is the tensor-product representation for the isotensor case.

With those resonances at hand, parameterized simply by their masses and widths, together with the
currents above, one can integrate them out again and derive the corresponding Wilson coefficients
of the dim-8 operators OS,0 and OS,1 in the section before, for all cases considered above. The
coefficients are listed in table 1.
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Figure 4: Differential cross sections of a scalar-isotensor resonance (left) and an isoscalar-tensor
resonance (right). Solid line: unitarized results, dashed lines: naive result, black dashed line: limit
of saturation of A22 (W+W+) / A02 (ZZ). Cuts: M j j > 500 GeV; ∆η j j > 2.4; p j

T > 20 GeV;
|η j| > 4.5. Left: pp→W+W+ j j, scalar-isotensor with mφ = 800GeV and Γφ = 80GeV, right:
pp→ ZZ j j, strongly interacting isotensor scalar with m f = 1200GeV and Γ f = 480GeV.

σ φ f X

FS,0 – 2 15 5

FS,1 1/2 -1/2 -5 -35

Table 1: Relation of resonance width Γ and mass m to the corresponding dimension eight operator
coefficients in the low-energy effective field theory. The factors listed in the table have to be
multiplied by 32πΓ/m5.

Tensor resonances as they could arise as Kaluza-Klein recurrences of a higher-dimensional
gravity theory, but also as analogues to tensor mesons in a composite model, are particularly in-
teresting. They usually give the largest signal contributions, as here the maximum number of spin
components are involved in the scattering, namely five, compared to scalar and vector cases. There
is a substantial difference in the theoretical treatment of those intrinsic spin degrees of freedom
when dealing with the tensor resonance on-shell and off-shell. In a full Monte-Carlo simulation
(cf. below), one actually simulates the final state and always has the tensor resonance in off-
shell configurations. Using the analogue of unitarity gauge for tensors, the propagators lead to
a bad high-energy behavior of the amplitudes. A symmetric tensor field fµν has 10 components
which are reduced by the on-shell conditions to five physical components within the Fierz-Pauli La-
grangian [15]. These conditions are the tracelessness, f µ

µ = 0 and the transversality, ∂µ f µν = 0.
However, these Fierz-Pauli conditions are not valid off-shell, so we use the Stückelberg mecha-
nism [16, 17] to make the off-shell high-energy behavior explicit. Onshell, there is only the tensor
field, f µν , while off-shell there is a vector field, Aµ ∼ ∂ν f µν , which corresponds to the transversal-
ity condition, a scalar implementing the fully contracted transversality, φ ∼ ∂µ∂ν f µν , and another
scalar corresponding to the tracelessness, σ ∼ f µ

µ . By gauge fixing, one of the scalar degrees

6
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Figure 5: Isoscalar-tensor resonance at m f = 1000 GeV and Γ f =100 GeV pp→ e+e−µ+µ− j j at√
s = 14TeV with luminosity of 3000fb−1, with cuts M j j > 500 GeV; ∆η j j > 2.4; p j

T > 20 GeV;
|η j|> 4.5; 100 GeV > Me+e− > 80 GeV; 100 GeV > Mµ+µ− > 80 GeV.

of freedom is redundant: σ = −φ . The technical details together with the full Lagrangians and
currents for the Fierz-Pauli as well as the Stückelberg picture can be found in [7].

Fig. 4 shows two examples how differential invariant mass distributions of the diboson system
behave at the LHC in the presence of such resonances. Both plots show different resonances in
different scenarios: the left plot a narrow isotensor scalar with mass mφ = 800 GeV and width
Γ f = 80 GeV, the right one a strongly-interacting scenario with a broad isoscalar-tensor resonance
of mass m f = 1.2 TeV and width Γ f = 480 GeV. The left plot shows the like-sign W+W+ channel,
the right one the opposite-sign W+W− → ZZ channel, respectively. General cuts for selection
and signal/background enhancement are shown in the caption. The full black line is the SM, the
black dashed line shows the corresponding unitarity limit of the leading partial wave amplitude,
the full blue line shows the SM with the corresponding resonance, while full red line depicts the
approximation with the two Wilson coefficients, FS,0 and FS,1. Clearly, if explicit resonances are
in the kinematic reach of the LHC, the EFT is no longer a viable approximation in any case. Note
that even in the simulation with an explicit resonance, T-matrix unitarization has been applied to
unitarize the high-energy tail of the distribution. As here the amplitudes do have explicit complex
poles, T-matrix unitarization is actually needed.

We have implemented the complete set of longitudinal dimension-6 and dimension-8 opera-
tors together with the prescription of K-/T-matrix unitarization (for longitudinal VBS) in the Monte
Carlo event generator WHIZARD [18, 19]. It contains a quite elaborate machinery for QCD pre-
cision physics, where it uses the color flow formalism [20], it has its own parton shower imple-
mentations [21], and quite recently has successfully demonstrated its QCD NLO capabilities [22].
WHIZARD has been used for a plethora of BSM studies, and is able to read in external models,
e.g. via [23]. Using this implementation, we simulated vector boson scattering at the LHC with its
design energy of

√
s = 14 TeV for all kinds of narrow and wide resonances of different spin and

isospin. Fig. 5 shows an example of an isoscalar tensor resonance of mass m f = 1 TeV and a width
of Γ f = 100 GeV in the scattering of opposite-sign W s into two Zs. A standard set of selection cuts
are mentioned in the caption of the figure. The left plot shows the invariant mass of the diboson

7
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system, which in this case is fully reconstructible, while the right plot shows the distribution of the
opening angle of the two muons from one of the Zs. The latter is one of the angular observables
that could be used to discriminate the spin of such resonances. More examples can be found in [7].

4. Conclusions

The search for new physics in the electroweak sector in vector boson scattering at the LHC
can be studied in the context of effective field theory, however, the introduction of dim-6 and dim-8
operators leads to a very limited range of applicability of the EFT ansatz. In many models, dim-8
operators could be the leading contributions where tree-level effects are forbidden by symmetries,
and first contributions come in at the one-loop level, i.e. at dim-8. LHC as a hadron collider probes
a vast range of energy scales, and high-energy events tend to (over-)dominate the exclusion limits
(or search potentials) for new models. In most cases this is due to wrong assumptions on the un-
derlying model, if EFT-based approaches in regimes are used where perturbative unitarity is lost.
We studied examples of a dim-6 and two dim-8 operators and derived unitarity limits for the dif-
ferent spin and isospin channels in the scattering of longitudinal electroweak vector bosons. Then,
a unitarization method, T-matrix unitarization, that is parameter-free and that is an extension of
the "classic" K-matrix unitarization has been applied to produce results that are physically mean-
ingful. The T-matrix unitarization has certain advantages, as it is defined for amplitudes that are
intrinsically complex, and does not rely on the existence of a perturbative expansion. For weakly
coupled amplitudes without imaginary parts it is identical to K-matrix unitarization. This proce-
dure is not just an academic exercise, it allows to produce Monte Carlo events that could actually
come from a quantum field theory realized in nature. Furthermore, it is itself a possible limit of a
a strongly interacting continuum like in QCD or close to a quasi-conformal fixed point, or it could
correspond to a strongly interacting model right below the onset of a new resonance that is just a
little bit outside the kinematical reach of LHC. Even if the T-matrix prescription is not the correct
extrapolation of the EFT, it can be interpreted as upper bound of the corresponding elastic chan-
nels, e.g. isospin-spin channels, due to its saturizing character. In combination with its property,
that it leaves an interaction matrix invariant, which already satisfies unitarity, it can always used as
“fail-safe”-mechanism to generate event samples, which respect fundamental physical properties.
We show examples of cross sections as well as kinematic and angular distributions to show the
effects between "bare" EFT and unitarized simulations.

Beyond this parameter-less approach to new physics in vector boson scattering, we provided a
set of simplified models taking the SM added by all possible resonances in the spin-isospin chan-
nels to which two EW vector bosons can couple. We focused on scalar and tensor resonances,
while vector resonances are more complicated due to their potential mixing with the EW bosons.
To account for effects of particularly strongly interacting models, in addition higher-dimensional
operators can be added. Also, adding just single resonances does not lead to renormalizable models
with sound high-energy behavior, hence, we also applied T-matrix unitarization to the simplified
models. In order to start with a prescription that already has the best possible high-energy behavior,
we isolated the scalar and vector degrees of freedom in massive tensor fields via the Stückelberg
mechanism to represent explicitly the bad behavior of tensor propagators in unitarity gauge. We
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concluded with a fully differential example for a simplified model with an isoscalar tensor reso-
nance.

An updated study for vector boson scattering in future lepton colliders [24, 25] is completed in
[26]. Further work will be devoted to the study of transverse W and Z polarizations, the discussion
of vector resonances as well a implementation of the T-matrix for 2→ 3 processes, which is relevant
for triple weak boson production.
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