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1. Introduction

Various features of quantum chromodynamics (QCD) are an important part of the phenomenol-
ogy of the events at hadron colliders, such as the LHC. Such effects also include soft and non-
perturabative features. They contribute to the modelling of additional proton–proton interactions
in one bunch crossing (pile-up) and multiple parton–parton interactions in one proton–proton col-
lision, as well as the underlying event. Due to the non-pertubative nature of low energy QCD only
phenomenological models exist to describe the behaviour of these effects. In order to constrain the
input parameters of these models, diverse measurements of these soft-QCD effects are needed.

The ALICE [1], ATLAS [2] and CMS [3] collaborations at the LHC have published a large set
of measurements at various centre-of-mass energies.

2. Particle Production in Minimum Bias Measurements

Inclusive charged particle measurements, so-called minimum bias measurements, probe soft-
QCD interactions with a low momentum transfer. The understanding of these interactions plays a
crucial role in the modelling of pile-up interactions. The measurements at

√
s = 13 TeV are based

on tracks, which are corrected for detector effects and unfolded to particle level [4, 5, 6].
Figure 1 shows the measured distributions of the transverse momentum pT, the pseudo-rapidity

η and the charged-particle multiplicity. The EPOS generator [7] with the LHC tune, which is based
on a parton-level Gribov-Regge theory as well as hydrodynamic effects and is typically used in
astroparticle physics, shows a very good description of the data. The same can be seen for the
Monash tune of the PYTHIA8 generator [8]. The HERWIG++ generator [9] is tuned to describe
underlying event behaviour and shows strong discrepancies compared to the minimum bias data.
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Figure 1: Distribution of the pT (left, ALICE [4]), pseudo-rapidity η (center, CMS [6]) and charged-particle
multiplicity (right, ATLAS [5]) of inclusive charged particles compared to various model predictions of
different generators.

The rise of the mean charged-particle multiplicity, measured in the central η region, as a
function of the centre-of-mass energy is shown in Figure 2. The general behaviour is well described
by all models considered. Again, the EPOS generator provides the best description.
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Figure 2: Charged-particle multiplicity in the central rapidity region, |η |< 0.2, as a function of the centre-
of-mass energy in various regions of phase-space, compared to different model predictions as measured by
ATLAS [5].

In addition to the inclusive measurements, the ALICE collaboration measured the rate of
strange particle production, i.e. the strange particle yield relative to the charged pion yield, as
a function of the charged-particle multiplicity [10]. The strange hadron rate is shown in Figure 3,
for proton–proton, proton–lead and lead–lead collisions. While generally the rates at low multiplic-
ity proton–proton collisions are reasonably well predicted by theory calculations, the intermediate
rise in the strangeness production is not modelled by any of the simulations, especially for the Ω
rate. This measurement shows a clear deficit in the currently used tunes for both the PYTHIA and
the EPOS model.

3. The Underlying Event

The underlying event (UE) encompasses the activity in a proton–proton scattering which oc-
curs in addition to the parton–parton hard scattering. These are initial and final state radiation,
multiple, soft parton interactions (MPI) and the proton remnants. Just as for inclusive particle pro-
duction, only phenomenological models exists to describe the UE, which have to be tuned based
on measurements. Due to its contribution to a proton–proton interaction, the UE can be crucial for
precision measurements at the LHC.

Typical measurements of the UE require the hard process to be separated from the remnants.
In hard jet production, this can be done by splitting the particles in the event into three regions
in |∆φ | to the leading object. The toward region, defined as |∆φ | < 60◦, contains the particles
close to the leading object, which can be strongly influenced by the hard scattering. The away
region, |∆φ |> 120◦, is dominated by the recoil of the leading object. The transverse regions, with
60◦ < |∆φ |< 120◦, are assumed to be unaffected by the hard scattering and are therefore sensitive
to the UE activity.
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Figure 3: Measurement of the strange hadron production rate as a function of the charged-particle multi-
plicity by ALICE [10].

Alternative methods require a colour-neutral object, like a leptonically decaying Z boson, in
order to provide a trigger signature. As the Z boson and its decay products in this case do not
interact via QCD, this allows for a clean measurement of the UE.

The ATLAS collaboration has published a detector-level measurement [11] of the UE at√
s = 13 TeV. The analysis closely follows the minimum bias measurement, but the results are

not unfolded to particle level. Figure 4 shows the mean energy density and the mean particle den-
sity in events with a leading track of pT > 1 GeV and pT > 5 GeV, respectively. In the transverse
region, most of the simulations agree within 10% with the measured data. The level of agreement
is similar for the energy and the particle density. At low leading track pT the HERWIG++ EE5
tune [12] shows larger discrepancies, as this region is more similar to inclusive charged particle
production as measured in the minimum bias analyses. At higher leading track pT, the minimum
bias tune A2 [13] for PYTHIA8 does not agree well with the measurement.

The CMS collaboration published a measurement of the UE at
√

s = 13 TeV that is fully
corrected and unfolded to particle level [14]. In this measurement, both single tracks as well as jets
are considered as the leading object, with separate distributions for both cases. The observables are
the mean particle density and the mean energy density of charged particles with pT > 0.5 GeV and
|η |< 2.0 in the event. In this measurement, several effective configurations of the transverse region
are considered. transMAX and transMIN label the regions of phase space with 60◦ < |∆φ |< 120◦

to the leading object with the higher, or lower, density, respectively. The former region is more
sensitive to the additional QCD radiation in the event, while the latter one contains the effects of
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Figure 4: Detector-level measurements by ATLAS of the mean energy density (left) and the mean particle
density (right) as a function of the |∆φ | to the leading charged-particle in the event, in comparison to different
model predictions [11].

the generally softer multiple parton scattering. These effects also enter the MAX region, but are
small compared to the radiation.
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Figure 5: Particle level measurements by CMS of the mean energy density (left) and the mean particle
density (right) as a function of the leading jet pT [14].

Figure 5 shows the measurements in the transMIN region as a function of the leading jet
pT. Overall the data is reasonably described by the models, with the best agreement found in
the comparison to the PYTHIA8 MONASH tune. While EPOS describes the low pT region well,
the model shows larger deviations at higher leading jet pT. In comparison to the measurement at
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√
s = 2.76 TeV, the particle density increases strongly with the centre-of-mass energy. The overall

level of agreement of the simulation is worse at
√

s = 13 TeV.
A measurement of the event shapes in leptonic Z boson events at

√
s = 7 TeV is published by

ATLAS [15]. As the Z boson and its decay products do not interact via the strong interaction, all
charged particles excluding the two leptons from the Z decay are considered in the observables.
The measurements are corrected for detector effects and pile-up, and unfolded to particle level for
charged particles with pT > 0.5 GeV and |η |< 2.5.
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Figure 6: Charged particle multiplicity (left) and the scalar sum of the charged particle transverse momenta
(right) for low pT leptonic Z boson events, measured by ATLAS [15].

In the measurement, inclusive event shape variables like the transverse thrust and the spheroc-
ity were found to show a good agreement between data and simulations. For lower Z boson pT,
the charged particle multiplicity, Nch, and strongly correlated observables like the scalar sum of the
charged particle transverse momenta, ∑pT, show sizeable discrepancies between the considered
models and the data. Figure 6 shows two exemplary distributions. The best description is given by
the HERWIG 7.0 generator, which shows reasonable agreement in the charged particle multiplicity.
Nonetheless, for the ∑pT distribution significant deviations are observed.

4. Double Parton Interactions

Double parton interactions (DPI, also DPS for double parton scattering) are the occurrence
of two hard parton–parton interactions in one proton–proton interaction. The cross section for the
DPI process pp→ A+B, where both A and B are independent parton–parton interactions, is given
phenomenologically by

σ
DPI
A+B =

1
1+δAB

σAσB

σeff
,

where σA and σB are the single parton interaction (SPI, SPS) cross sections for the processes A and
B, respectively. The term 1

1+δAB
is a symmetry factor, which is 1

2 for identical processes A = B, or 1,
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otherwise. The “effective cross-section” σeff characterises the transverse area of the proton–proton
interaction. It is assumed to be independent of the processes A and B, and measurements so far
show no indication of a centre-of-mass dependence, being consistent with a value of σeff ' 15 mb.
This description is based on the assumption that the processes A and B are uncorrelated.

The CMS collaboration published a search for DPI in same-sign WW events, in the W±W±→
µ±µ±+2ν channel. Due to the low cross section of the SPI same-sign contribution, this analysis
profits from a high signal to background ratio. The separation of the double- and single-parton
interactions faces several challenges. In order to exploit the differences in the angular correlations
from the leptons, which differ because the DPI processes are uncorrelated, a boosted decision tree
(BDT) is trained. Additional information is provided by the lower boost of the W bosons in DPI
events, in which the bosons do not recoil against each other.

Figure 7: Distribution of the BDT output, used to separate the DPI signal and the various backgrounds in
the CMS analysis [16].

Figure 7 shows the distribution of the BDT output used to separate the DPI signal from the
various backgrounds. Based on this, the 95% CL limits on the cross section for DPI WW production
is σDPI

WW < 1.12 pb, with an expected limit of 1.18 pb. This translates into a lower limit on the
effective cross section of σeff > 5.91mb, consistent with previous measurements.

In an alternative analysis by CMS [17], a measurement of events with two b-tagged and two
light jets is performed. Parts of the phase space, in which the two light jets and the two b-jets are
back to back, are sensitive to DPI. The measurement is based on low pile-up data at

√
s = 7 TeV

from 2010.
In general, good agreement was found between the measurement and the simulation, in the

differential distributions of the jet pT and η , as can be seen in Figure 8 (left). The mean jet pT

balance, defined as

∆rel pT =

∣∣∣~pjet1
T +~pjet2

T

∣∣∣
∣∣∣~pjet1

T

∣∣∣+
∣∣∣~pjet2

T

∣∣∣
,
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for the b-tagged jets, is not well reproduced by any model, as shown in Figure 8 (right). At small
∆rel pT, where the two jets are in balance, the measurement is sensitive to hard DPI, while the
models are tuned to soft MPI as found in UE measurements. The analysis concludes, that the
description of both soft MPI and hard DPI in the same model is difficult and not achieved.
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Figure 8: Measurement by CMS of the differential cross section of two b-jet plus two light jet production
as a function of the jet pT (left) and as a function of the relative pT difference of the bottom jets (right) [17].

The ATLAS collaboration has measured the DPI cross section of four jet events in the low pile-
up data of 2010 at

√
s= 7 TeV [18]. In this measurement, two classes of signal event topologies are

considered. In the complete DPS case (cDPS) two of the four leading jets stem from one parton–
parton interaction and the other two jets from the other interaction. In the case of semi-complete
DPS (sDPS), only one of the four leading jets is from one interaction, while the other three jets
stem from the other parton–parton interaction, including QCD radiation.

In order to separate the two signal classes from SPS four jet events, a neural network is used.
Sensitive inputs are mainly the pT balance of the leading jets and the angular separations. While
the SPS and sDPS models are taken from simulation, the cDPS signal is modelled by overlaying
di-jet events from data. This removes any dependence on the modelling of these events in the
simulation. Figure 9 shows the jet pT balance of the third and fourth leading jet. The neural
network is trained to classify the events into three categories: SPS, sDPS and cDPS. The sum
of the outputs is normalised to one, ξSPS + ξsDPS + ξcDPS = 1, in order to allow each value to be
interpreted as a probability.

Figure 10 shows the resulting measurement compared to the models. Although the jet pT

balance is a powerful variable to discriminate between DPS and SPS, the cDPS model is orders of
magnitudes below the SPS contribution in any bin. In the neural network probabilities however, the
bins with the highest cDPS probability are dominated by the cDPS model. This allows the cross
section for the DPI production of four jet events to be extracted using a two-dimensional template
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Figure 9: Distribution of the relative pT difference of the third and fourth leading jet for DPS and SPS events
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Figure 10: Measurement by ATLAS of the relative pT difference of the third and fourth leading jet (left)
and the normalised sum of the sDPS and cDPS probabilities for 0.0 < ξSPS < 0.1 (right), as obtained by the
neural network [18].

fit to the neural network output. From this, the parameter σeff can be derived,

σeff = 16.1+2.0
−1.5 (stat.) +6.1

−6.8 (syst.) mb .

This result is compared to previous measurements in Figure 11. Due to the complicated nature of
these measurements the uncertainties are large, and as such, no dependence on the centre-of-mass
energy can be observed.
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Figure 11: Measurements of the effective proton cross section, σeff as a function of the centre-of-mass
energy (ATLAS, [18]).

5. Conclusion

Measurements of particle production, underlying event and double parton interactions from
the ALICE, ATLAS and CMS collaborations are presented. As the soft, non-pertubative region of
QCD is only described by phenomenological models, these measurements provide important input
for the validation and improvement of the modelling. This is important, as these types of inter-
actions, together with the various other features of QCD, can play a crucial role in high precision
measurements and as the background to searches for new physics.

In general, reasonable agreement between the measured data and the simulation is found.
Discrepancies in measurements highlight the need for better description. For this, further tuning,
but also refinement of the phenomenological models is needed.
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