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Supersymmetry (SUSY) is one of the most popular and promising extensions to the Standard
Model (SM) of particle physics. It predicts partner particles for all SM particles with a spin
difference of 1/2. These SUSY partners, if they exist within a reachable energy scale, should
be produced at the Large Hadron Collider (LHC). The events are usually characterized by high
missing transverse energy and can have varying jet and lepton multiplicities, depending on the
model used. Searches for partners of third generation squarks are of special interest because of
their special event topologies.
Many searches have been performed in proton-proton collisions at

√
s = 13 TeV at the LHC with

the ATLAS detector, using an integrated luminosity of 3.2 fb−1. Several of these will be presented
in these proceedings.
No significant deviations from the SM expectations have been observed and exclusion limits have
been set for the respective models. Most analysis already exceed the sensitivity achieved with
Run1 analysis.
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1. Introduction

Supersymmetry is one of the most popular and promising extensions to the Standard Model
of particle physics. It solves problems within the Standard Model, as for instance the absence of a
dark matter candidate or the hierarchy problem, by introducing new partner particles to the existing
ones. The partners have exactly the same quantum numbers, except for the spin, which differs by
1/2. Since no SUSY particles have been observed, the mass of the SUSY partners must be higher,
thus the symmetry must be broken.
The partner particles of the third generation quarks, scalar top (stop) and scalar bottom (sbottom)
quarks, are of particular interest. The stop is the most important part for the solution of the hierarchy
problem, because of its large Yukawa coupling. Third generation squarks can have many different
decay modes, depending on the exact mass hierarchy of the SUSY particles (see Figure 1), so
inclusive searches for scalar quarks of the first and second generation are usually not as sensitive
as dedicated searches.
The searches presented here use simplified models as benchmarks for their optimizations, which
implies that a branching ratio of 100% is assumed for the decays of interest and that no other
SUSY particle interferes with the process. Most of the searches target R-parity conserving models,
which means that the SUSY particles are produced in pairs and that a SUSY particle always has
a SUSY particle in its decay products. This leads to a stable lightest SUSY particle (LSP), which
is in the searches presented here assumed to be the lightest neutralino. It participates in the weak
interaction only, so it is a candidate for dark matter, and leaves the detector without any energy
deposition. This leads to missing transverse energy Emiss

T , one of the key characteristics of events
containing SUSY particles. The stops and sbottoms are assumed to be the (next-to-)next-to-lightest
SUSY particle (N)NLSP. In the NNLSP case, a chargino is assumed to have a mass in between the
stop/sbottom mass and the neutralino mass.
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Figure 1: Example of possible decay modes of the scalar top quark in a simplified model, where the Neu-
tralino χ̃0

1 is the lightest super symmetric particle and the scalar top quark t̃1 is the next heavier particle.
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2. Background estimation

All analyses use data driven approaches for the estimation of the main backgrounds (see Fig-
ure 2):
Besides the signal regions (SRs), which are optimized for a high signal sensitivity, control regions
(CRs) are defined, such that they have a high purity of events for a given background. These re-
gions are orthogonal to the SRs, but have a similar topology for the targeted process. This usually
leads to unique CRs for each main background of each signal region. The CRs are used to extract
information about the backgrounds and extrapolate them to the SRs. This is done using various
methods including jet smearing, the matrix method, the ABCD method or simply an extraction of
the normalization factor.
In order to validate the procedure, validation regions (VRs) may be defined, which are again or-
thogonal to the signal and control regions, but show sensitivity for the extrapolations from the CRs
to the SRs.

Figure 2: Schematic visualisation of the fit procedure.
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3. Existing limits from 8 TeV analysis

During the 2012 data taking period, searches targeting third generation squarks were per-
formed. No significant excesses over the SM expections were observed and exclusion limits were
set for all searches. An overview over the existing limits for scalar top quarks is shown in Figure
3. The exact limits depend on the mass hierarchies of the SUSY particles, and the resulting decay
modes. In the case where the scalar top quark is the NLSP, masses up to mt̃1 ≈ 700 GeV were ex-
cluded for high mass differences ∆m = mt̃1 −m

χ̃0
1
, while mt̃1 ≈ 300 GeV were reached for smaller

∆m. In the NNLSP case, the limits reach up to mt̃1 ≈ 500−600 GeV.
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Figure 3: Exclusion limits for scalar top quarks in various simplified models [1]. The upper (lower) plot
shows scenarios where the scalar top quark is the NLSP (NNLSP). The searches targeting individual decay
modes are represented by a color code.
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4. Analysis at
√

s = 13 TeV

4.1 Sbottom 2b + Emiss
T

Figure 4: Feynman di-
agram of the benchmark
model.

This search targets a scenario where the sbottom is the NLSP.
The event selection requires two b-tagged jets and vetos events with
leptons. The signal topology depends on the mass difference between
sbottom and neutralino ∆m = mb̃1

−m
χ̃0

1
, thus two types of SRs are

defined.

SR A: High ∆m

A high mass difference leads to high-pT b-jets and large Emiss
T .

In addition to requirements on these variables, the contransverse mass

m2
CT = [ET(b1)+ET(b2)]

2− [~pT(b1)−~pT(b2)]
2

is used to enhance signal purity. The main backgrounds are W- and
Z-boson production in association with heavy flavor. The softest signal region of this type is shown
in Figure 5.

SR B: Low ∆m

A low mass difference leads to low-pT b-jets and small Emiss
T . In order to suppress the back-

ground events, events containing high pT initial state radiation (ISR) jets are selected, which boost
the sbottom system. This results in even tighter requirements on Emiss

T and jet pT than in SR A. The
main background is from top pair production.
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Figure 5: Left: mCT distribution in a SR of type A. No excess over the SM expectation is observed. Right:
Exclusion limit for this Sbottom 2b + Emiss

T analysis. For high ∆m sbottoms with masses up to ≈ 840 GeV
can be excluded. The 8 TeV sensitivity (grey area) was exceeded by this analysis. [2]
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4.2 Stop 2 lepton search

Figure 6: Feynman di-
agram of the benchmark
model.

This search targets a scenario where the stop is the NNLSP. The
event selection requires two opposite sign leptons, which do not orig-
inate from a Z-boson. In addition the stransverse mass mT2 and the
kinematic variable R1 are used to suppress the backgrounds. The sig-
nal regions are split into events with same or different flavor leptons.

mT2 = min
~q1

T +~q2
T =~pmiss

T

(
max

[
mT (~p`1

T ,~q1
T ),mT (~p`2

T ,~q2
T )
])

R1 =
Emiss

T
meff

The analysis is interpreted for two signal models

m
χ̃
±
1

= 2×m
χ̃0

1
and mt̃1−m

χ̃
±
1

= 10 GeV.

The highest sensitivity is reached for compressed spectra, where the b-jets have low pT , thus no
tagging requirement is applied.

Since no significant excess over the SM is observed, exclusion limits are set. These are shown
in Figure 7.
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Figure 7: Exclusion limits for the 2L Stop analysis. Left: Exclusion limit for the scenario where m
χ̃
±
1

=
2×m

χ̃0
1
. For small ∆m = mt̃1 −m

χ̃0
1

stops with masses up to ≈ 525 GeV can be excluded. Right: Exclusion
limit for the scenario where mt̃1 −m

χ̃
±
1

= 10 GeV. For high ∆m stops with masses up to ≈ 575 GeV can be
excluded. [3]
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4.3 Stop 1 lepton search
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Figure 8: Feynman dia-
grams of the benchmark
models.

This search targets two different scenarios: In scenario 1 the
stops are directly produced and decay into a top quark and a W-boson,
while in scenario 2 the stops are decay products of the directly pro-
duced gluinos. Furthermore the mass difference ∆m = mt̃1 −m

χ̃0
1

is
assumed to be very small, thus the decay products of the stops are
soft and can not be reconstructed. However the top quarks, which
also originate from the gluinos, are produced on-shell.
The event selection requires one lepton and one b-tagged jet. Addi-
tionally the variables

mT =
√

2p`
TEmiss

T

(
1− cos(∆Φ(~pmiss

T ,~p`
T))
)

mχ

top: best top mass from jets

amT2 and mτ
T 2: variations of mT2

are used to enhance the sensitivity. The main backgrounds are top
pair production and top pair production in association with a Z-boson
that decays into two neutrinos.
In one of the signal regions of scenario 1 a 2.2σ [4] excess
is observed, which leads to the unusual form of the exclusion
limit.

No significant excess over the SM is observed, exclusion limits are set. These are shown in Figure
9.
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Figure 9: Exclusion limits for the 1L Stop analysis. Left: Exclusion limit for scenario 1. The SR which is
used for the final sensitivity in this plot is the one with the best expected sensitivity. In the region dominating
in the central region, a 2.2σ excess is observed, leading to the gap in the exclusion limit. In the other regions
no excess is observed. Right: Exclusion limit for scenario 2. For high ∆m = mg̃−mt̃1 gluinos with masses
up to ≈ 1.47 TeV can be excluded. [4]
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4.4 RPV Stop: UDD

Figure 10: Feynman di-
agram of the benchmark
model.

This search targets a R-parity violating model with a UDD-type
coupling. The stops are produced in pairs, but decay each into a bot-
tom and a strange quark. This leads to a final state without leptons
or invisible particles. However the events should contain at least four
jets, with two pairs that have an invariant mass m j j close to the stop
mass. Additionally each pair should contain a b-tagged jet.
The main background for this analysis is the multijet production,
which is derived completely from data. The shape of the distributions
is extracted from b-veto regions, while the normalization is being de-
termined using the ABCD method. For the definition of these four
regions, the variables

A =
|m j j

1 −m j j
2 |

m j j
1 +m j j

2

and

cos(θ ∗) = (~pt̃1
1
+~pt̃2

1
) ·~xbeam pipe in center of mass frame

are used.
The SRs are defined as windows around the benchmark stop mass in the average mass of the two
jet pairs

mavg = (m j j
1 +m j j

2 )/2.

A small excess is observed in the SR for mt̃1 = 350 GeV with a local p-value of p0 = 0.07 [5].
Since this is not significant, exclusion limits are set. These are shown in Figure 11.
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Figure 11: Results of the RPV Stop analysis. Left: mavg distribution in the signal enhanced region. No
significant excess is observed. Right: The final exclusion limit. Stop masses up to ≈ 375 GeV can be
excluded. [5]
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5. Conclusions

Many searches for SUSY, and in particular searches for third generation squarks, have already
been performed with ATLAS at 13 TeV. No significant deviations from the SM expectation have
been observed so far, so exclusion limits have been set. Many searches have an increased sensitivity
compared to the 8 TeV analysis, so despite the much smaller integrated luminosity, the exclusion
limits already exceed the existing limits (see Figure 12).
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MSUGRA/CMSSM 0-3 e, µ /1-2 τ 2-10 jets/3 b Yes 20.3 m(q̃)=m(g̃) 1507.055251.85 TeVq̃, g̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 3.2 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) ATLAS-CONF-2015-062980 GeVq̃

q̃q̃, q̃→qχ̃
0
1 (compressed) mono-jet 1-3 jets Yes 3.2 m(q̃)-m(χ̃

0
1 )<5 GeV To appear610 GeVq̃

q̃q̃, q̃→q(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ (off-Z) 2 jets Yes 20.3 m(χ̃
0
1)=0 GeV 1503.03290820 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 3.2 m(χ̃

0
1)=0 GeV ATLAS-CONF-2015-0621.52 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃01 1 e, µ 2-6 jets Yes 3.3 m(χ̃

0
1)<350 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) ATLAS-CONF-2015-0761.6 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20 m(χ̃
0
1)=0 GeV 1501.035551.38 TeVg̃

g̃g̃, g̃→qqWZχ̃
0
1 0 7-10 jets Yes 3.2 m(χ̃

0
1) =100 GeV 1602.061941.4 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.63 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 cτ(NLSP)<0.1 mm 1507.054931.34 TeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 m(χ̃
0
1)<950 GeV, cτ(NLSP)<0.1 mm, µ<0 1507.054931.37 TeVg̃

GGM (higgsino-bino NLSP) γ 2 jets Yes 20.3 m(χ̃
0
1)<850 GeV, cτ(NLSP)<0.1 mm, µ>0 1507.054931.3 TeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 2 jets Yes 20.3 m(NLSP)>430 GeV 1503.03290900 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃g̃, g̃→bb̄χ̃
0
1 0 3 b Yes 3.3 m(χ̃

0
1)<800 GeV ATLAS-CONF-2015-0671.78 TeVg̃

g̃g̃, g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 3.3 m(χ̃
0
1)=0 GeV To appear1.76 TeVg̃

g̃g̃, g̃→bt̄χ̃
+
1 0-1 e, µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV 1407.06001.37 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 3.2 m(χ̃

0
1)<100 GeV ATLAS-CONF-2015-066840 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 3.2 m(χ̃

0
1)=50 GeV, m(χ̃

±
1 )= m(χ̃

0
1)+100 GeV 1602.09058325-540 GeVb̃1

t̃1 t̃1, t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7/20.3 m(χ̃

±
1 ) = 2m(χ̃

0
1), m(χ̃

0
1)=55 GeV 1209.2102, 1407.0583117-170 GeVt̃1 200-500 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃
0
1 or tχ̃

0
1

0-2 e, µ 0-2 jets/1-2 b Yes 20.3 m(χ̃
0
1)=1 GeV 1506.08616, ATLAS-CONF-2016-00790-198 GeVt̃1 205-715 GeVt̃1 745-785 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-245 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-600 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-610 GeVt̃2

t̃2 t̃2, t̃2→t̃1 + h 1 e, µ 6 jets + 2 b Yes 20.3 m(χ̃
0
1)=0 GeV 1506.08616320-620 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-335 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-475 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350355 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029715 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0-2 jets Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029425 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1501.07110270 GeVχ̃±

1
, χ̃

0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086635 GeVχ̃0

2,3

GGM (wino NLSP) weak prod. 1 e, µ + γ - Yes 20.3 cτ<1 mm 1507.05493115-370 GeVW̃

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )=0.2 ns 1310.3675270 GeVχ̃±

1

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 dE/dx trk - Yes 18.4 m(χ̃

±
1 )-m(χ̃

0
1)∼160 MeV, τ(χ̃

±
1 )<15 ns 1506.05332495 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584850 GeVg̃

Metastable g̃ R-hadron dE/dx trk - - 3.2 m(χ̃
0
1)=100 GeV, τ>10 ns To appear1.54 TeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 20.3 1<τ(χ̃
0
1)<3 ns, SPS8 model 1409.5542440 GeVχ̃0

1

g̃g̃, χ̃
0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 7 <cτ(χ̃

0
1)< 740 mm, m(g̃)=1.3 TeV 1504.051621.0 TeVχ̃0

1

GGM g̃g̃, χ̃
0
1→ZG̃ displ. vtx + jets - - 20.3 6 <cτ(χ̃

0
1)< 480 mm, m(g̃)=1.1 TeV 1504.051621.0 TeVχ̃0

1

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 20.3 λ′
311

=0.11, λ132/133/233=0.07 1503.044301.7 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.45 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121,0 1405.5086760 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133,0 1405.5086450 GeVχ̃±

1

g̃g̃, g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% 1502.05686917 GeVg̃

g̃g̃, g̃→qqχ̃
0
1, χ̃

0
1 → qqq 0 6-7 jets - 20.3 m(χ̃

0
1)=600 GeV 1502.05686980 GeVg̃

g̃g̃, g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.2500880 GeVg̃

t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 20.3 1601.07453320 GeVt̃1

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 20.3 BR(t̃1→be/µ)>20% ATLAS-CONF-2015-0150.4-1.0 TeVt̃1

Scalar charm, c̃→cχ̃
0
1 0 2 c Yes 20.3 m(χ̃

0
1)<200 GeV 1501.01325510 GeVc̃

Mass scale [TeV]10−1 1

√
s = 7, 8 TeV

√
s = 13 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: March 2016

ATLAS Preliminary√
s = 7, 8, 13 TeV

*Only a selection of the available mass limits on new
states or phenomena is shown.

Figure 12: Summary plot including 7, 8 and 13 TeV limits of ATLAS searches for Supersymmetry. Only a
representative selection of the available results is shown. [6]
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