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Tau leptons are important to many physical processes in high-energy physics. They are used for
measurements of Standard Model processes, and searches for new physics beyond the Standard
Model. With their high mass, tau leptons are prime signatures for e.g. Higgs boson decays to
fermions. In these proceedings, the reconstruction and identification algorithms for hadronically
decaying tau leptons in Run-2 of the LHC are presented, along with the identification performance
in 13 TeV data collected in 2015.
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1. Introduction

Tau leptons (τ) are the heaviest of the charged leptons, and the only leptons that can decay
into hadrons (with a branching fraction of about 65 %). Their very short life time (0.3 ps) means
that they typically decay before reaching the inner detector, and can only be identified via their
decay products. The hadronic decays consist of an odd number of charged particles, and zero or
more neutral particles, and a tau-type neutrino (ντ ). Hadronic τ decays are used in searches for the
Standard Model Higgs boson decays into τ+τ− [1], for charged Higgs bosons in decays to τν [2],
and many other physics analyses in ATLAS.

2. Reconstruction

Jets with a transverse momentum pT > 10GeV and pseudorapidity |η |< 2.5 are used to seed
the τ reconstruction algorithm [3]. The tau vertex (TV) association algorithm finds the best match
to the τ production among the primary vertex candidates. The TV defines the direction and co-
ordinate system of the τ decay and ensures robustness against multiple pp interactions (pile-up).
Tracks from the inner detector are associated to τ decays in a small cone (R < 0.2) around its direc-
tion. The track selection is optimized to yield the largest efficiency for correctly reconstructing the
number of charged hadrons (prongs) in simulated events. Figure 1 shows the efficiency for correct
assignment of the τ production vertex, and the efficiency for reconstructing the correct number of
associated tracks.
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Figure 1: Efficiency for correct assignment of the τ production vertex for the TV association algorithm,
as compared to the default primary vertex in the event, as a function of the number of primary vertices, for
simulated 1-prong τ decays (left) [3]. Efficiency for reconstructing the correct number of associated tracks
for simulated hadronic τ decays, as a function of the pT of the true visible decay products [3].

3. Jet discrimination

Hadronic τ decays are similar in appearance to jets from quarks or gluons, which are produced
at a much higher rate. These jets are typically broader, and have different shapes as compared to
hadronic τ decays. Jet rejection is performed with boosted decision tree (BDT) algorithms that
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use shower shape variables based on information about cells in the calorimeters and tracks in the
inner detector. The variables include momentum of tracks and deposited energy in the calorimeters
in the core (∆R < 0.2) and isolation (0.2 < ∆R < 0.4) regions around the τ candidate direction,
ratios of energy deposits from charged particles in the electromagnetic as compared to the hadronic
calorimeter, information about the impact parameter (for 1-prong candidates) and secondary vertex
(for 3-prong candidates), and the presence of neutral pions.

Compared to the identification algorithm in Run-1 [4], the input variables to the BDT al-
gorithms are harmonized between the event reconstruction and the high-level trigger (HLT). The
pile-up correction is based on the average number of interactions, instead of the number of primary
vertices from the full reconstruction. The output from the π0 reconstruction algorithm is replaced
with some of its input variables. These changes result in equivalent levels of background rejection.

The BDT algorithms are trained using simulated Z → ττ and multi-jet events. Three working
points are defined, called loose, medium, and tight, corresponding to identification efficiencies of
0.6 (0.5), 0.55 (0.4), and 0.45 (0.3) respectively, for 1-prong (3-prong) τ decays. Figure 2 shows
the identification efficiency, and the combined reconstruction and identification efficiency.
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Figure 2: Efficiency for identification, and combined reconstruction and identification, for 1-prong (left) and
3-prong (right) simulated hadronic τ decays, as a function of the pT of the true visible decay products [3].

4. Electron discrimination

The likelihood-based method [5] used to discriminate electrons against charged pions is also
used to discriminate electrons against hadronic τ decays. The likelihood discriminator uses in-
formation about tracks from the inner detector, and about energy deposits in electromagnetic and
hadronic calorimeters. Figure 3 shows the likelihood score distribution for hadronic τ decays
and prompt electrons, and the background rejection power as a function of the τ identification effi-
ciency. The nominal working point for the electron discrimination corresponds to a 95 % efficiency.

5. Energy scale

The τ energy scale (TES) consists of two corrections to the reconstructed energy. Contribu-
tions from pile-up interactions is subtracted, and a detector response function brings the energy
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Figure 3: The electron likelihood score for 1-prong τ decays, as compared to electrons (left), and inverse
background efficiency as a function of the τ identification efficiency in different regions of |η | (right) [3].
Both the signal 1-prong hadronic τ decays, and the electron background are taken from simulated events.

to the scale of the true visible τ decay products. The pile-up correction increases linearly with
the number of primary vertices. The detector response functions are derived with respect to pile-up
corrected energy at the local hadronic (LC) scale [6]. Figure 4 shows the detector response function
for 1- and multi-prong τ decays.
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Figure 4: Detector response functions for 1- (left) and multi-prong (right) τ decays, in different regions
in |η | [3]. The distributions are fitted to an analytic function, and extrapolated to a constant for τ decay
products with low transverse energy.

6. Performance measurements

The identification efficiency of hadronic τ decays is measured in data using a tag-and-probe
analysis technique in Z → ττ events, where one τ decays into a muon and the other hadronically.
This selection allows the study of hadronic τ decays with high purity, and it is used to measure
the identification efficiency both in the event reconstruction and the HLT. Figure 5 shows distribu-
tions of the BDT score in data compared to the expectation from simulated events and data-driven
methods [7, 8].
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Figure 5: Distributions of the BDT score variable in the event reconstruction [7] (left) and the HLT [8]
(right) measured in 13 TeV data collected in 2015, corresponding to an integrated luminosity of 3.3 fb−1.

7. Conclusion

The reconstruction and identification algorithms for hadronically decaying tau leptons, as well
as the hadronic τ energy scale calibration, are outlined. The differences in the identification al-
gorithms between Run-1 and Run-2 are described. The loose, medium, and tight identification
working points for jet discrimination correspond to efficiencies of 0.6 (0.5), 0.55 (0.4), and 0.45
(0.3) respectively, for 1-prong (3-prong) τ decays. The nominal working point for the electron
discrimination corresponds to a 95 % τ identification efficiency. The identification performance in
the event reconstruction and the HLT has been measured in 13 TeV data, and good agreement with
simulated events and data-driven methods is observed.
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