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The lack of conclusive evidence for new physics in Run I of the LHC suggests that future discov-
eries may manifest themselves with small numbers of signal events. In this case, it will be crucial
to use analysis techniques that extract as much information as possible from a limited number
of events. Previously, a technique exploiting correlations in the full multi-particle phase space to
efficiently reconstruct intermediate and invisible masses in decay chains has been demonstrated
for the case of four final state particles. We review this technique and discuss its generalization
to five or more final state particles. We also demonstrate a new technique for implementing a
mass finding algorithm based on the same principle in the presence of realistic backgrounds with
Voronoi tessellations.
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1. Introduction

Given the lack of any discovery beyond the Higgs boson at the LHC, any future discovery, even
in the high luminosity phase, is likely to come with a small number of signal events. Therefore,
extracting all available information from a limited sample of events will be a top priority.

Many promising discovery channels include the production of colored partners. If the sector
containing these particles is stabilized by some symmetry, the resulting cascade decays will con-
tain a stable, invisible particle in the final stage. Traditional mass determination methods for decays
with invisible particles rely on the measurement of the endpoints of 1-dimensional kinematic dis-
tributions. These methods work because the shape of the boundary of phase space for decays is a
function only of the masses involved in the decay.1 However, there are many events that lie close to
the boundary but that would not be near the endpoint of any of a set of 1-dimensional distributions.
Additionally, the location of many endpoints is set by the differences between masses in the decay,
and have very weak dependence on the absolute mass scale. This translates into poor sensitivity of
endpoint-based methods to the mass scale.

A simple illustration of this for the Dalitz plot for 3-body decays is shown in figure 1. There
are many events outside the boundary specified by some incorrect mass hypothesis (dashed line),
but the endpoints given by the projection of the incorrect hypothesis are consistent with the data.
Moreover, the locations of the endpoints depend only on the differences between the parent mass M
and daughter masses mi. Any spectrum with the same mass differences would be indistinguishable
to an endpoint study.
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Figure 1: Dalitz plot with simulated data from a 3-
body decay. The true boundary of phase space is
shown in solid blue. All data points are contained
within the true boundary. A boundary corresponding
to an incorrect mass hypothesis is shown in dashed
blue.

We will describe how to use the full boundary of phase space to determine masses with much
better efficiency and sensitivity to absolute mass scale than is possible with 1-d distributions when
there are at least 4 final state particles, summarizing work presented in [1, 2]. We will apply our
technique to events where the cascade decay takes place on one side of the event, while the other

1Although the distribution of the decay events in phase space depends on the matrix element and spins of the
particles, these factors do not change the shape of the phase space boundary.
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side includes only an invisible partner, such as gluino-LSP associated production in the MSSM.
The same technique can be used in a symmetric event at the cost of combinatoric uncertainties. To
demonstrate the principle of our method, we also ignore uncertainties associated with the presence
of backgrounds. In section 4, we will briefly discuss other methods that are being developed to
deal with these complications.

2. Phase Space Boundary Enhancement

The standard form of the phase space volume element is expressed as a function of individ-
ual components of 4-momenta, which are not manifestly Lorentz invariant. A less well-known
formulation expressed purely in terms of Lorentz scalars can be constructed as follows [3].

For an n-body decay, we define Mn as the n× n matrix with elements pi · p j and ∆i as the
coefficients of the characteristic polynomial of Mn, that is, Det [λ1n×n−Mn]≡ λ n−

(
∑

n
i=1 ∆iλ

n−i
)
.

The kinematically accessible region of phase space corresponds to ∆1,2,3 > 0, ∆4 ≥ 0 and ∆5,...,n =

0 [3]. For n≥ 4, the phase space volume element locally has the form [3, 2]

dPSn = (const.)×M−2
X

( n

∏
i< j

dm2
i j

)
∆
−(n−3)/2
4 Θ(∆4)

( n−4

∏
α≤β

δ (eαβ )
)

δ

( n

∑
i< j

m2
i j− const.

)
. (2.1)

Here MX is the parent mass, the final δ -function enforces energy conservation, and the eαβ are
a set of constraints that are linear in all m2

i j to first order. From this expression, we see that the

phase space density scales as ∆
−(n−3)/2
4 , which results in an enhancement near the boundary ∆4 = 0

which becomes stronger with increasing n. The forms of the eαβ are complicated, which makes
this expression difficult to use in practice. This expression can be rearranged into a symmetrical
form, at the expense of introducing non-linear arguments into the δ -functions, as

dPSn = (const.)×M−2
X

( n

∏
i< j

dm2
i j

)
∆
(n−5)/2
4 Θ(∆4)δ (∆5) · · ·δ (∆n)δ

( n

∑
i< j

m2
i j− const.

)
. (2.2)

We have seen that when expressed in terms of Lorentz scalars m2
i j, the most useful events for

determining the masses (i.e., for finding the boundary) are the most plentiful. Fitting a boundary to
the data, even with a limited number of events, provides an efficient way to measure the masses.

3. Boundary Fitting with Likelihood Functions

In order to demonstrate the efficacy of our method versus traditional endpoint or similar 1-d
distribution methods, we will introduce quality-of-fit functions for each that can be used to find
the masses that provide the best fit to a data sample. We find the best-fit masses for many 100-
event samples of Monte Carlo data with fixed true masses, and plot the corresponding histograms
to illustrate the performance of the two methods.

We define the measured position of a kinematic endpoint as the highest value obtained within
the data sample for the observable in question. The best-fit mass hypothesis for the endpoint method
will minimize the quality-of-fit function

Q = Ξ ∑
i=endpoints

(
Opredicted

i −Omeasured
i

Omeasured
i

)2

, (3.1)
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where Ξ→∞ if any one of the measured endpoints exceeds the predicted value calculated according
to the hypothesis, so that it is rejected, and otherwise Ξ = 1. The expressions for all endpoints used
in our analysis are listed in [1, 2].

Turning to the full boundary method, since the phase space density becomes large near the
boundary of the accessible region, the likelihood function should favor hypotheses for which as
many events as possible lie near the boundary, with no events outside. To quantify the quality-
of-fit, we introduce an event-wise likelihood function Levent({m2

i j}|{Mi}) which is equal to the
normalized probability density for the event with data {m2

i j} calculated as if the mass hypothesis
{Mi} were correct. The total likelihood for a given sample is

L (data|{Mi}) = ∏
events

Levent({m2
i j}|{Mi}). (3.2)

The details of the calculation of the Levent are described in [1, 2]. As for the endpoint method,
hypotheses for which there exist events in the sample that fall outside the allowed region calculated
according to the hypothesis are excluded. The best-fit hypothesis is the one that maximizes L .

As mentioned in the introduction, one of the primary disadvantages of the endpoint method
is its poor sensitivity to the absolute mass scale. For this reason, we present our results in a basis
{α,β ,γ, . . .} where α parametrizes a shift of all masses equally, and the others are orthogonal
linear combinations of the masses that encode the mass differences.

As an example, our results for spectrum 1 of the 2+2+3 topology as listed in [2] are shown
in figure 2. The results for other spectra and topologies are presented in detail in [1, 2]. It is easy
to see that the multidimensional phase space method yields both more precise and more accurate
results for the overall mass scale as well as for the mass differences.
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Figure 2: Distribution of the
best-fit values of α , β , γ

and δ (see discussion in text)
for the endpoint method (EP;
blue) and the phase space
boundary method (PSB; yel-
low), using the first bench-
mark spectrum for the 2+2+3
topology of [2] and data sam-
ples of 100 events. The true
masses correspond to α , β ,
γ and δ all being zero. The
mean and standard deviations
are shown.

4. Boundary Fitting with Voronoi Tessellation

It is worth emphasizing that all of the mass information is encoded by the shape of the bound-
ary regardless of the distribution of events in the interior. As such, the likelihood method described
above, while easy to implement, is not ideal, since it is also fitting the interior distribution by mak-
ing an assumption about the decay matrix element and final state spins. We have also ignored
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the complications associated with combinatoric uncertainties in 2-sided events and the presence
of backgrounds. Methods are being developed to address these issues by fitting the shape of the
boundary directly, even in the presence of backgrounds and making no reference to the distribution
of events within, with Voronoi tessellation.

Given a space populated with a set of events, Voronoi tessellation divides the space into cells
such that each cell contains the points which are nearest to a given event than to any other. The
sharp concentration of signal events on the phase space boundary ensures that cells on the boundary
will tend to have smaller volumes than many of their neighbors that do not straddle the boundary.
Therefore, boundary cells may be selected by the large standard deviation of their neighbors’ vol-
umes.

For squark decays q̃→ jlnlfχ̃0 proceeding through a cascade of 2-body decays it has already
been demonstrated [4] that mass measurement is possible even in the presence combinatoric and
simple Standard Model backgrounds by using Voronoi tessellation, as illustrated in fig. 3.

Figure 3: Two-dimensional slices of the phase space of a squark cascade decay plane at a fixed value of
m2

jlf
= (8000,6000,4000) GeV2 (left to right). Cells are colored according to the standard deviation of the

volumes of their neighbors as defined in [4]. The true location of the boundary is shown in dashed lines.
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