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1. Introduction

Improvements in the precision of the determination of|Vus| are of interest in the context of
further refining 3-family-unitarity tests. The latest determination,|Vud |= 0.97417(21), from super-
allowed 0+ → 0+ nuclearβ decays [1], yields the 3-family-unitarity expectation

|Vus|= 0.2258(9) . (1.1)

For comparison, the direct determination fromKℓ3, using the updated 2014 FlaviaNet resultf+(0)|Vus|=

0.2165(4) [2], and 2016 FLAGn f = 2+1+1 assessment,f+(0) = 0.9704(33) [3], yields

|Vus|= 0.2231(9) . (1.2)

Similarly, the direct determination fromΓ[Kµ2]/Γ[πµ2], using the updated 2014 FlaviaNet result
| fKVus|/| fπVud | = 0.2760(4) [2], |Vud | from Ref. [1], and the 2016 FLAGn f = 2+1+1 average
fK/ fπ = 1.193(3) [3], yields

|Vus|= 0.2253(7) . (1.3)

Given the (albeit mild) tension between theKℓ3 andΓ[Kµ2]/Γ[πµ2] results, additional indepen-
dent determinations, such as those provided by hadronicτ decays, are of interest. In what follows,
we discuss exclusive determinations based on the measuredτ → Kντ , τ → πντ andτ → Kπντ

branching fractions, the inclusive determination based onthe conventional flavor-breaking (FB)
sum rule analysis of the non-strange and strange decay distributions [4], and a new alternate deter-
mination employing lattice data and the inclusive strange decay distribution. The conventional FB
sum rule analysis is of particular interest because of the long-standing puzzle of the rather low|Vus|

values obtained using its conventional implementation [4,5, 6], the most recent of which [6] yields

|Vus|= 0.2176(21) , (1.4)

3.6σ below the 3-family-unitarity expectation of Eq. (1.1).

2. Hadronic τ decays in the Standard Model

In the Standard Model (SM), withRV/A;i j ≡ Γ[τ−→ ντ hadronsV/A;i j (γ)]/Γ[τ−→ ντ e−ν̄e(γ)],
the differential distribution,dRV/A;i j/ds, for decays mediated by the flavori j = ud, us vector (V)

or axial vector (A) currents, is related to the spectral function, ρ (J)
V/A;i j, of the spinJ = 0,1, flavor

i j, V or A current-current two-point function scalar polarizations,Π(J)
V/A;i j, by [7]

dRV/A;i j

ds
=

12π2|Vi j|
2SEW

m2
τ

[

wτ(yτ)ρ
(0+1)
V/A;i j(s)−wL(yτ)ρ

(0)
V/A;i j(s)

]

≡
12π2|Vi j|

2SEW

m2
τ

(1− yτ)
2 ρ̃V/A;i j(s) , (2.1)

whereyτ = s/m2
τ , wτ(y) = (1− y)2(1+ 2y), wL(y) = 2y(1− y)2, SEW is a known short-distance

electroweak correction, andVi j is the flavori j CKM matrix element. The dominant, non-chirally-
suppressedJ = 0 contributions are determined byfπ and fK , and hence accurately known. The
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remaining continuum, doubly-chirally-suppressedJ = 0 contributions are negligible fori j = ud,
and for i j = us, both small and highly constrained by the known value ofms, through the asso-
ciated i j = us scalar and pseudoscalar sum rules. This makes possible mildly model-dependent
determinations of continuumρ (0)

V/A;us(s) contributions in the ranges ≤ m2
τ relevant to hadronicτ

decays [8, 9]. With this input,dRV/A;ud,us/ds provides a direct determination ofρ (0+1)
V/A;ud,us(s).

3. Exclusive mode determinations of|Vus|

With Bπ andBK the single-prongπ andK branching fractions,Be the electronic branching
fraction, andRP = BP/Be, P = π, K, one has, from Eq. (2.1),

Rπ =
24π2SEW

m2
τ

(

1−
m2

π
m2

τ

)2

| fπVud |
2

RK =
24π2SEW

m2
τ

(

1−
m2

K

m2
τ

)2

| fKVus|
2 , (3.1)

with fπ,K the π, K decay constants in the ChPT convention (fπ ≃ 92 MeV ). |Vus| can thus be
determined fromRK with external input forfK , or from RK/Rπ with external input for|Vud | and
fK/ fπ . With branching fractionsBK, Bπ andBe from the HFAG Summer 2014 fit [10],|Vud | from
Ref. [1], and 2016 FLAGn f = 2+1+1 input for fK/ fπ and fK , one obtains

|Vus|= 0.2222(17) (from RK) (3.2)

|Vus|= 0.2230(18) (from RK/Rπ). (3.3)

The latter is theτ analogue of theΓ[Kµ2]/Γ[πµ2] determination. Comparing these results to those
of Eqs. (1.1), (1.2) and (1.3), we see theτ determinations are compatible, within errors, with
those fromKℓ3 andΓ[Kµ2]/Γ[πµ2], as well as (at the 1.4 and 1.9 σ levels) with 3-family unitarity
expectations. The errors on theτ determinations, however, are a factor of∼ 2 larger.

One can also, in principle, determine|Vus| from the normalization of any exclusive strange
decay mode, given reliable theoretical input for thes-dependence of the corresponding decay dis-
tribution. This is, in principle, feasible for theKπ modes, where dispersive representations can
be employed for the timelikeKπ form factors f+,0(s). Ref. [11] has investigated expectations for
theKπ branching fractions, employingKℓ3 and Belle [12]τ− → K̄0π−ντ decay distribution data.
Triply subtracted versions of the dispersion relations areemployed to reduce sensitivity to the high-
s region where the form factors phases are not known. The predicted branching fractions, including
estimated long-distance electromagnetic and strong isospin-breaking effects, are

B[τ− → K̄0π−ντ ] = 0.00851(30)

B[τ− → K−π0ντ ] = 0.00471(18) , (3.4)

where the errors are 100% correlated, and totally dominatedby the uncertainties in the phase space
integrals, reflecting errors in the dispersive form factor results induced by the current data errors.
TheB[τ− → K̄0π−ντ ] result is compatible within errors with the HFAG 2012 input,0.00821(18),
for the normalization of the correspondingτ decay distribution, but some tension exists between
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theB[τ− → K−π0ντ ] result and the corresponding 0.00432(15) HFAG 2012 normalization input.
One should also bear in mind that the 2007 BaBar result,B[τ− → K−π0ντ ] = 0.00416(19) [13], is
more precise by almost a factor of 2 than all other determinations entering the 2012 HFAG average
and hence dominates that average. This average, however, differs significantly from the more re-
cent, but still preliminary, BaBar thesis result,B[τ− → K−π0ντ ] = 0.00500(15), obtained from an
analysis focussed specifically on improvingπ0 identification [14]. The experimental situation for
the normalization of theK−π0 mode is thus somewhat unsettled. In addition, with current data as
input, the branching fraction expectations of Eqs. (3.4) have errors of 3.5% and 3.8%, respectively,
which would produce∼ 0.0030 uncertainties in|Vus|. This approach is thus not currently competi-
tive, but might become so with errors on theτ → Kπντ distributions reduced to the level expected
once the full Belle II data set is available [11].

4. Inclusive flavor-breaking sum rules for |Vus|

The conventional inclusive FBτ decay determination of|Vus| [4] employs finite energy sum
rules (FESRs) involving the FB polarization difference,∆Πτ ≡ Π(0+1)

V+A;ud − Π(0+1)
V+A;us, and associated

spectral function,∆ρτ ≡ ρ (0+1)
V+A;ud − ρ (0+1)

V+A;us. These FESRs have the form
∫ s0

0
w(s)∆ρτ(s)ds = −

1
2πi

∮

|s|=s0

w(s)∆Πτ(s)ds , (4.1)

and are valid for any analyticw(s) and anys0 > 0. Experimental data is used on the LHS, the OPE
(for sufficiently larges0) on the RHS.

TheJ = 0+1 FESR form Eq. (4.1) requires∆ρτ(s), obtained by applying the mildly model-
dependent continuumus J = 0 subtraction to the experimentaldRV+A;us/ds distribution. This
subtraction could be avoided for FESRs involving the alternate FB spectral differencẽρV+A;ud−us(s)
and associated FB polarization differenceΠ̃V+A;ud−us(Q2) (whereQ2 = −s), defined by

Π̃V+A;ud−us(Q
2) ≡

(

1−
2Q2

m2
τ

)

Π(1)
V+A;ud−us(Q

2) + Π(0)
V+A;ud−us(Q

2) . (4.2)

The J = 0 D = 2 OPE series entering these alternate FESRs, however, displays very bad conver-
gence and has fixed order truncations badly violating spectral positivity constraints [15]. Use of
theJ = 0+1 form and associated continuumus J = 0 subtraction are thus unavoidable.

Applying theus J = 0 subtraction todRV/A;i j/ds yields aJ = 0+ 1 analogue,dR(0+1)
V/A;i j/ds.

Re-weighted versions

Rw
V+A;i j(s0)≡

∫ s0

0
ds

w(s)
wτ(s)

dR(0+1)
V+A;i j(s)

ds
(4.3)

may then be constructed for anyw and anys0 ≤ m2
τ . Defining the FB difference

δRw
V+A(s0) ≡

Rw
V+A;ud(s0)

|Vud |2
−

Rw
V+A;us(s0)

|Vus|2
, (4.4)

and replacing the LHS by its OPE representation via Eq. (4.1), one finds, solving for|Vus| [4],

|Vus| =

√

Rw
V+A;us(s0)/

[

Rw
V+A;ud(s0)

|Vud |2
− δRw,OPE

V+A (s0)

]

. (4.5)
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Provided all theoretical and experimental inputs to the RHSof Eq. (4.5) are reliable, results for
|Vus| will be independent ofs0 andw. Employing a range ofs0 andw thus allows any assumptions
entering the analysis to be tested for self-consistency. The s0-independence test is particularly
useful if assumptions about unknown higher dimension effective OPE condensates are employed,
since integratedD = 2k+2 OPE contributions scale as 1/sk

0, and problems with these assumptions
will thus manifest themselves as an unphysicals0-dependence in the results for|Vus|

1.
The conventional implementation of Eq. (4.5) [4] (which leads to the low values of|Vus| noted

above) employs the single weightw = wτ and singles0 choice s0 = m2
τ . Sincewτ has degree

3, OPE contributions up to dimensionD = 8, unsuppressed by additional powers ofαs, appear in
δRw,OPE

V+A (s0). The leadingD = 2 and sub-leadingD = 4 OPE contributions are fixed byαs, the light
and strange quark masses and the light and strange quark condensates [16], and hence can be taken
as external input [3, 17, 18]. TheD = 6 and 8 condensates, however, are not known experimentally.
Typically [4, 5], D = 6 contributions have been estimated using the vacuum saturation approxima-
tion (VSA) andD = 8 contributions neglected. A very strong double cancellation is, however,
present in theD = 6 VSA estimate, a factor of∼ 3 reduction coming from the cancellation in the
individual ud andus V+A sums, and a further factor of∼ 6 from the cancellation in the subsequent
FB ud-us V+A difference. With studies in theud sector showing the VSA to be very crude, and
VSA violations to be significantly channel-dependent [19],this high degree of cancellation makes
reliance on theD = 6 VSA estimate potentially dangerous. SinceD = 8 contributions are assumed
negligible largely on the grounds that theD = 6 VSA estimate is already small, a similar comment
applies to this assumption as well.

The restriction tow = wτ and s0 = m2
τ in the conventional implementation has the experi-

mental advantage that the associated spectral integralsRwτ
V+A;ud,us(m

2
τ) are fixed by the inclusive

non-strange and strange hadronicτ branching fractions, making knowledge of the details of the
differential distributions unnecessary. This advantage,however, comes at the cost of forgoing the
s0- and weight-independence checks which would serve to test the assumptions regardingD = 6
and 8 OPE contributions for self-consistency.

|Vus| results from analyses with variables0 and weights other thanwτ [5], in fact, show signifi-
cants0- and weight-dependence. A particularly illuminating comparison is provided by the results
of thewτ(y) = 1−3y2+2y2 andŵ(y) = 1−3y+3y2− y3 FESRs, wherey = s/s0. Since the coef-
ficients ofy2 in wτ andŵ differ only by a sign, the integratedD = 6 OPE contributions for the two
cases will be identical in magnitude but opposite in sign. If, as sugested by the VSA estimate, the
D = 6 contributions are small forwτ , they will also necessarily be small for ˆw as well. Similarly,
the integratedD = 8 contributions forwτ are−2 times those for ˆw and, if negligible for the former,
will also be negligible for the latter. If the assumptions employed for theD = 6 and 8 contributions
in the conventional implementation are reliable, the|Vus| results obtained usingwτ and ŵ should
display good individuals0 stability and be in good agreement. In contrast, if the effective D = 6
and/or 8 condensates are not negligible, this should show upass0-instabilities of opposite signs in
the two cases, with the 1/s2

0 and 1/s3
0 scalings of the integratedD = 6 and 8 contributions leading

to differences between the two sets ofs0-dependent results which decrease with increasings0.

1Explicitly, ignoring αs-suppressed logarithmic variations, and writing theD > 4 contribution to∆Πτ (Q2) as
CD/QD, with CD the effective dimensionD condensate, the integratedD = 2k+2 OPE contribution for a polynomial
weightw(y) = ∑k=0 xkyk, with y = s/s0, is (−1)k C2k+2 wk/sk

0.
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The left panel of Figure 1 shows the results of this comparison. The results clearly follow the
pattern expected ifD > 4 contributions are not negligible, and are incompatible with theD = 6,8
assumptions underlying the conventional implementation.The right panel shows the results of
additionals0- and weight-independence tests involving the weightswN(y), N = 2,3,4, with2

wN(y) = 1−
N

N −1
y+

1
N −1

yN . (4.6)

The solid lines show the results produced using the conventional implementation treatment ofD> 4
OPE contributions, the dashed lines those produced by the alternate implementation discussed
below, in whichD > 4 effective condensates are fitted to experimental data. Forall five weights,
the s0-dependent|Vus| results of the conventional implementation show evidence of converging
toward a common value ats0 > m2

τ , precisely as expected if thes0-instabilities result fromD > 4
OPE contributions larger than those employed in the conventional implementation.

2 2.5 3
s
0
 [GeV

2
]
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0.22

0.225
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|V
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2
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Figure 1: Left panel:|Vus| from thewτ andŵ FESRs with conventional OPE input (including contour im-
proved perturbation theory for theD = 2 series). Right panel: Comparison of conventional implementation
results (solid lines) with those obtained using central fittedC6,8,10 and the fixed order perturbation theory
D = 2 prescription favored by lattice results, for the weightsw2,3,4 (dashed lines).

A potential additional problem for the FB FESR approach is the slow convergence of theD= 2
OPE series which, to four loops, neglectingO(m2

u,d/m2
s ) corrections, is given by [16]

[

∆Πτ(Q
2)
]OPE

D=2 =
3

2π2

ms(Q2)

Q2

[

1+
7
3

ā+19.93ā 2 +208.75ā 3+ · · ·

]

, (4.7)

where ¯a=αs(Q2)/π, andms(Q2) andαs(Q2) are the runningMS strange quark mass and coupling.
With ā(m2

τ) ≃ 0.1, the 4-loop,O(ā3) term is, in fact, larger than the 3-loop,O(ā2) term at the
spacelike point on the contour|s|= s0 for all s0 accessible inτ decays. This raises the questions of
appropriateD = 2 truncation order and the reliability of conventional OPE error estimates.

It is possible to investigate these issues by comparing OPE expectations to lattice data for
∆Πτ(Q2). This comparison has been carried out usingn f = 2+1 RBC/UKQCD lattice data [21]

2The wN(y), like wτ (y), have a double zero ats = s0 (y = 1), a property which keeps duality violating (DV)
contributions safely small aboves ≃ 2 GeV 2 [20].
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in Ref. [22]. An excellent match between lattice data and theD = 2+4 OPE sum is obtained over
a broad high-Q2 interval stretching fromQ2 ∼ 10 GeV 2 down to∼ 4 GeV 2, provided one employs
the 3-loop truncated version of theD = 2 series with fixed (rather than local) scale treatment of
logarithmic contributions [22]. The fixed-scale and local-scale treatments are the analogues of the
“fixed-order” (FOPT) and “contour-improved” (CIPT) FESRD = 2 series treatments. The high-Q2

comparison also shows that conventionalD= 2+4 OPE error estimates are extremely conservative,
in spite of the slow convergence of theD = 2 OPE series [22]. BelowQ2 ∼ 4 GeV 2 one sees clear
deviations of theD = 2+4 OPE sum from the lattice data [22], confirming the presence,already
indicated by thewτ -ŵ FESR comparison discussed above, ofD > 4 OPE contributions much larger
than those employed in the conventional implementation.

While these results make clear that the conventional implementation approach must thus be
abandoned, they also suggest an obvious alternate implementation in which the 3-loop-truncated,
FOPT treatment of theD = 2 OPE series favored by the lattice is used, and, rather than mak-
ing assumptions about their values, theD > 4 effective OPE condensatesCD are obtained from
fits to the experimental data. Results of such an analysis, employing the weightswN(y), were
reported in Ref. [22]. The analysis uses the following experimental input:πµ2, Kµ2 and SM ex-
pectations for theπ and K pole contributions, recent ALEPH data for the continuumud V+A
distribution [23], Belle [12] and BaBar [13, 14] results forthe K̄0π− and K−π0 distributions,
BaBar [24] and Belle [25] results for theK−π+π− and K̄0π−π0 distributions, a combination of
BaBar [26] and Belle [27] results for the very smallK̄K̄K distribution and normalization, and 1999
ALEPH results [28] for the distribution of the sum of the remaining exclusive strange modes not
remeasured by the B-factory experiments. Two versions wereemployed for theK−π0 branching
fraction, which normalizes the corresponding exclusive mode distribution: 0.00433(15) from the
2014 HFAG summer fit [10], and the preliminary BaBar thesis result 0.00500(14) [14]. The lat-
ter is preferred by the BaBar collaboration, whose earlier result dominates the HFAG average; the
central results reported below thus correspond to this choice.

ThewN employed in Ref. [22] have the useful property that thewN FESR involves only two
free parameters,|Vus| andC2N+2. These were fitted using the range 2.15 GeV 2 ≤ s0 ≤ 3.15 GeV 2,
within which integrated DV contributions should be small for “doubly pinched” weights like the
wN [20]. Excellent consistency is observed between the|Vus| obtained from thew2, w3 and w4

FESRs [22]. Thes0 dependence of|Vus| obtained from these FESRs, when central fitted values
for the effective condensatesC6,8,10 are employed in place of the assumed values used in the con-
ventional implementation, are shown by the dashed lines in the right panel of Figure 1. Clearly
thes0- and weight-dependence problems displayed by the conventional implementation results are
completely cured once a range ofs0 is employed, and this range is used to fit theD > 4 effective
condensates to experimental data.

The excellent consistency ofw2, w3 andw4 FESR results makes possible a combined 3-weight
fit. Using the updated preliminary BaBarK−π0 branching fraction as input, one finds [22]

|Vus| = 0.2228(5)th(23)exp , (4.8)

where the theory error is dominated by the uncertainty in〈mss̄s〉 and the experimental error by
the uncertainties in the strange exclusive distributions [22]. The result is in very good agreement
with that fromKℓ3, and compatible within errors with 3-family unitarity expectations. Using the
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alternate HFAG 2014K−π0 branching fraction as input yields instead|Vus| = 0.2200(5)th(23)exp,
0.0024 higher than the conventional implementation result employing the sameK−π0 branching
fraction. Further clarification of the experimental situation for this mode is of obvious interest.

5. An alternate, non-FB, inclusive|Vus| determination

The OPE-lattice comparison demonstrates that the alternate implementation of the FB FESR
approach enjoys very favorable theoretical errors. With current experimental errors, however, the
resulting |Vus| uncertainty is a factor of∼ 2 larger than those fromKℓ3 andΓ[Kµ2]/Γ[πµ2]. The
FB FESR error is currently strongly dominated by the uncertainties on the weighted strange spec-
tral integrals. To understand what near-term improvementsmight be possible, it is useful to look
at the relative contributions of the different exclusive modes to the weightedus V+A spectral in-
tegrals entering the analysis of Ref. [22]. Table 5 shows these results forw2,3,4 at the twos0

fit-window endpoints (the results vary monotonically between these two endpoints). The target

Table 1: RelativewN -weightedus spectral integral contributions. “Kπ” column entries represent theK−π0

and K̄0π− sum, “Kππ (B factory)” column entries theK−π+π− and K̄0π−π0 sum and “Other” column
entries the sum of the ALEPH 1999 residual mode and very smallKK̄K̄ contributions.

Weight s0 [GeV 2] K Kπ Kππ (B factory) Other

w2 2.15 0.496 0.426 0.062 0.017
3.15 0.360 0.414 0.162 0.065

w3 2.15 0.461 0.446 0.073 0.019
3.15 0.331 0.415 0.182 0.074

w4 2.15 0.441 0.456 0.082 0.021
3.15 0.314 0.411 0.194 0.081

for a competitive|Vus| determination is sub-0.5%, corresponding to a sub-% level determination of
the inclusive weightedus V+A spectral integrals. At present, the errors on the lower-multiplicity
BaBar- and Belle-basedK−π0, K̄0π−, K−π+π− andK̄0π−π0 contributions are dominated by the
uncertainties on the corresponding branching fractions, which normalize the unit-normalized ex-
perimental distributions. These are currently 1.5%, 3.0%, 2.8% and 2.3%, respectively, and are
a natural target for near-term improvement. More difficult to improve are the errors on the resid-
ual mode contributions, currently based on the old 1999 ALEPH data, which not only have low
statistics but involve Monte Carlo input for a number of the higher-multiplicity mode distributions.
These data produce∼ 25% uncertainties on the weighted residual mode spectral integral contribu-
tions. With the relative inclusivew2,3,4-weighted spectral integral contributions shown in the table,
these∼ 25% uncertainties generate∼ 1.6%, 1.8% and 2.0% errors on the corresponding weighted
s0 = 3.15 GeV 2 inclusiveus spectral integrals from residual mode contributions alone. A factor of
> 2 improvement in the residual mode contribution errors, andhence significant improvements to
the experimental analyses of the higher multiplicity strangeτ decay modedifferential distributions
would thus be required before the FB FESR approach would become fully competitive. This is
unlikely to be feasible in the near future.
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Further progress is, however, possible using an alternate analysis which employs lattice data in
place of the OPE and has the flexibility to reduce the relativecontribution of higher-error, higher-
multiplicity modes to the relevant weighted strange spectral integrals. The analysis is based on gen-
eralized dispersion relations involving the product of thespectral function combinatioñρV+A;us(s)
with weights consisting of products of factors having polesat EuclideanQ2 [29]. The dispersive
integral over this product is then given by a sum of residues involving the corresponding polariza-
tion Π̃V+A;us(Q2) evaluated at those pole locations. These polarization values can be evaluated very
accurately on the lattice, provided the pole locations are at moderateQ2 [29].

This works as follows [29]. From Eq. (2.1), the combination|Vus|
2 ρ̃V+A;us(s) is directly de-

terminable from the experimentaldRus;V+A/ds distribution,without the need of any (albeit mildly
model-dependent) continuum J = 0 subtraction. For weights

WN(s)≡
1

∏N
k=1(s+Q2

k)
, (5.1)

with N ≥ 3 and allQ2
k > 0, one has the convergent, unsubtracted dispersion relation

∫ ∞

th
dsWN(s) ρ̃us;V+A(s) =

N

∑
k=1

Π̃us;V+A(Q2
k)

∏ j 6=k

(

Q2
j −Q2

k

) . (5.2)

The Π̃V+A;us(Q2
k) on the RHS of Eq. (5.2) are to be evaluated using lattice data.The LHS, up to

the unknown factor|Vus|
2, is to be evaluated from the experimentaldRus;V+A/ds distribution. Since

the spectral integral on the LHS extends up to infinity, whiledRus;V+A/ds data is available only up
to s = m2

τ (with, moreover, significant errors in the upper part of the kinematically allowed region),
one aims to use pQCD to approximate the contribution froms>m2

τ , and choose the number,N, and
locations,Q2

1, · · · ,Q
2
N , of the poles, in such a way that contributions to the LHS fromboth s > m2

τ
and the region whereus data errors are large are strongly suppressed.

These goals can be accomplished by choosingN large enough and keeping allQ2
k below∼

1 GeV 2 [29]. IncreasingN typically lowers the error on the LHS of Eq. (5.2) by more strongly
suppressing contributions from the high-s region, but increases the errors on the RHS (the level of
cancellation in the sum of residues can be shown to grow with increasingN). The error on|Vus|

is to be minimized by optimizing the choice ofN and the pole locations,{Q2
k}, subject to these

competing constraints. Checking that the results for|Vus| are independent of the choice ofN and
the{Q2

k} also provides useful self-consistency tests for the method.
Preliminary results obtained using this framework were presented by RBC/UKQCD and its

external collaborators at Lattice 2016 [29]. Two RBC/UKQCDn f = 2+ 1 ensembles with near-
physical light quark masses [30] were employed, one of size 483×96 with 1/a = 1.73 GeV , mπ =

139 MeV , mK = 499 MeV , the other of size 642 × 128 with 1/a = 2.36 GeV , mπ = 139 MeV ,
mK = 508 MeV . Good agreement with 3-family-unitarity expectations anda preliminary total
error of∼ 0.6% for |Vus| using 88 configurations of the former and 80 of the latter werereported
[29]. The lattice component of this error is improvable withimproved statistics. Final results for
|Vus| are yet to be released, but expected soon, once studies of systematics uncertainties associated
with isospin-breaking corrections, continuum extrapolation, corrections for the small mis-tunings
of the light quark masses, and finite volume effects are completed [29].
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6. Summary

Exclusive mode|Vus| determinations employingτ branching fraction results forBK andBK/Bπ

have current errors 0.0017 and 0.0018. A factor of∼ 2 improvement would make these competitive
with those fromKℓ3 andΓ[Kµ2]/Γ[πµ2]. Belle II data should help in this regard, and may also make
feasible a precision dispersive determination usingKπ distribution results.

Recent results show that the> 3σ low |Vus| values seen in the conventional implementation
of the FB FESR approach result from problems with assumptions aboutD = 6,8 OPE conden-
sates. This problem cannot be cured using the conventional implementation. An alternate approach
which allowsD > 4 condensates to be fit to data cures thes0- and weight-dependence problems
of the conventional implementation and yields results in much better agreement with other|Vus|

determinations. This alternate approach requires the fulldR/ds distributions and can not be car-
ried out using branching fraction information alone. Comparisons with lattice data show that this
alternate FB FESR approach has very favorable theoretical errors. Significant improvements in the
high-multiplicity us experimental distributions are, however, required to makethe approach fully
competitive.

The new inclusive approach using lattice data and the inclusive us V+A distribution only [29]
has a number of advantages over the FB FESR approach. It requires no continuumJ = 0 us sub-
traction, uses precision lattice data rather than the OPE, and allows the use of weights which can be
chosen to much more strongly suppress spectral integral contributions from the higher-multiplicity,
high-error part of the spectrum without blowing up the errors on the sum of residues which are to
be evaluated using lattice data [29]. The much stronger dominance of the resulting spectral inte-
grals byK andKπ exclusive mode contributions ensures smaller experimental errors for the new
approach and makes significant near-term improvements in those errors possible through improve-
ments to theKπ branching fractions alone.
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