

Formation of Two-Neutron Halo in Light Drip-Line Nuclei from the Low-Energy Neutron-Neutron Interaction

Toshio Suzuki¹

Department of Physics, College of Humanities and Sciences, Nihon University Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan E-mail: <u>suzuki@phys.chs.nihon-u.ac.jp</u>

Takaharu Otuska

Department of Physics, the University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: <u>otsuka@phys.s.u-tokyo.ac.jp</u>

Cenxi Yuan

Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University Zhuhai, 519082, Guangdong, China E-mail: <u>yuancx@mail.sysu.edu.cn</u>

Navin Alahari

GANIL, CEA/DSM-CNRS/IN2P3 Bd Henri Becquerel, BP 55027, F-14076, Caen Cedex 5, France E-mail: <u>navin@ganil.fr</u>

The formation of two-neutron halo is described using the neutron-neutron (n-n) interaction fixed at the low-energy n-n scattering limit. This method is tested for loosely-bound two neutrons in 22 C o, where a good agreement with experimental data is found. It is applied to halo neutrons in 22 C in two ways: with the 20 C core being closed or correlated due to excitations from the closed core. This nn interaction is shown to be strong enough to produce a two-neutron halo in both cases, locating 22 C on the drip line, while 21 C remains unbound. A unique relation between the two neutron separation energy, S_{2n}, and the radius of neutron halo is presented. New predictions for S_{2n} and the radius of neutron halo are given for 22 C. The estimated halo radius is found to be consistent with a recent experimental data. The appearance of Efimov states is also discussed. Spectra of excited states in 22 C are predicted. The n-n interaction used here is large compared to conventional shell-model interactions. Roles of three-body forces are discussed.

The 26th International Nuclear Physics Conference 11-16 September, 2016 Adelaide, Australia

¹Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

Two-neutron halos are found in several light drip-line nuclei such as ¹⁰He, ¹⁴Be, ¹⁹B and 22 C since it was found in 11 Li [1]. When one neutron is removed from these nuclei, they become unbound. The two-neutron halos in ¹¹Li, ¹⁴Be and ¹⁹B have rather complex structure, that is, with mixtures of two or more orbits, but those in ¹⁰He and ²²C have simple structure with almost pure $s_{1/2}^{2}$ components. Here, we are mainly concerned with the halo structure of ²²C. We study how the two-neutron halo in ²²C is formed from the low energy limit of neutron-neutron (n-n) interaction. We use a three-body model which assumes a ²⁰C-core and two valence neutrons interacting each other. This is a Borromean situation [2,3], and similar configurations have been considered in previous theoretical works [4-7] but with different methods and interactions. The ²⁰C-core is treated, on one hand, as a closed-core with $1p^{10}v1d_{5/2}^{6}$ configurations, and on the other hand as a correlated-core with mixing of $2s_{1/2}$ orbit. ²⁰C is known to have $2s_{1/2}^{2}$ components whose spectroscopic factor is about 1 [8]. Relations between the two-neutron separation energy, S_{2n}, and the halo radius are derived for both cases. The halo radius is estimated by taking into account a condition for ²¹C to be unbound, and compared with experimental data. A comment on Efimov states is made. In sect. 2, a three-body model is explained and applied to ²⁴O. S_{2n} and halo radius in ²²C are studied using both closed-shell and correlated ²⁰C-core. Spectra of ²²C are also predicted. In sect. 3, the low energy bare n-n interaction is compared with n-n interaction in the medium, and roles of there-body forces are investigated. A summary is given in sect. 4.

2. Three-body model with low energy n-n intearction

We use a three-body model consisiting a core and two neutrons. Neutron-core interaction is taken to be a one-body Woods-Saxon (WS) potential. The energy of a neutron in the WS potential, ε , is positive (negative) if it is unbound (bound). For the n-n interaction, v_{nn} , one in the low energy limit which reproduces both the scattering length, a_{nn} , and the effective range, r_{nn} , is used [9]. A gaussian radial form with the range of 1.795 fm is adopted, whose strength is adjusted to give $a_{nn} = -18.9$ fm and $r_{nn} = 2.75$ fm. The two-neutron energy, E_{nn} , is given by $E_{nn} = 2\varepsilon + \langle v_{nn} \rangle$ (1)

 $E_{nn} = 2\epsilon + \langle v_{nn} \rangle$ (1) where $\langle v_{nn} \rangle$ is the matrix element of v_{nn} for the two-neutron wave function and is negative. The three-body system is bound if E_{nn} is negative. Two-neutron separation energy is defined by $S_{2n} =$ - E_{nn} , and as one-neutron separation energy is given by $S_{1n} = -(\epsilon + \langle v_{nn} \rangle)$, $S_{2n} = 2S_{1n} + \langle v_{nn} \rangle$. Note

that obtained with $S_{1n}=S_{2n}/2$. Here, for a neutron the attraction from the other neutron is treated as an aditional onebody potential obtained by convolution of v_{nn} by the neutron wave functions. S_{1n} and bound neutron wave function are obtained by solving a Schrodinger equation in the WS+ the additional potential. The neutron wave function is used for the convolution of v_{nn} again. Thus, after this iterative procedure, S_{1n} , $\langle v_{nn} \rangle$ and S_{2n} are obtained self-consistently when they are converged.

that $S_{1n} = (S_{2n} - \langle v_{nn} \rangle)/2$ is larger than $S_{2n}/2$. The halo wave function damps more rapidly than

2.1 Application to ²⁴O

In the three-body model, ²⁴O is treated as ²²O-core and two neutrons. ²³O is bound with ε = -2.73 MeV. The WS potential is fixed to reproduce this value for ε . Then, S_{2n} and S_{1n} are

obtained by the above procedure; $S_{2n} = 6.94$ MeV and $S_{1n} = 4.21$ MeV which are very close to the experimental values of $S_{2n} = 6.92$ MeV and $S_{1n} = 4.19$ MeV, respectively [10].

Next, we discuss matter radii of the oxygen isotopes. Calculated root-mean-square (r.m.s.) matter radii of ²²O, ²³O and ²⁴O in the present three-body model are shown in Table I as well as the experimental values [11,12]. Here, except for the neutron $2s_{1/2}$ orbit harmonic oscillator wave functions are used for the evaluation of the matter radii with the center-of-mass corrections. The calculated matter radii are found to be close to the experimental values. We thus find that the present three-body model is quite successfull fo rthe description of the dripline nucleus ²⁴O.

Isotopes	Present three-	Ozawa [11]	Kanungo [12]
	body model		
²² O	2.85	2.88 ± 0.06	2.75 ± 0.15
²³ O	2.97	3.20 ± 0.04	2.95 ± 0.23
²⁴ O	3.03	3.19±0.13	

Table I Root-mean-square matter radii of oxygen isotopes in units of fm

2.2 ²²C with closed-shell ²⁰C-core

We now discuss ²²C which consisits of ²⁰C-core and two neutrons. We first assume that ²⁰C has a simple closed-core configuration with $1p^{10} v 1d_{5/2}^{6} (0^{+})$. As ²¹C is unbound ε is positive. The attractive n-n interaction makes ²²C bound. For each value of the strength of the WS potential, S_{2n} , $\langle v_{nn} \rangle$, S_{1n} and neutron halo wave function are obtained self-consisitently. The relation between S_{2n} and the r.m.s. radius of the halo, $\langle r^2 \rangle^{1/2}$, is shown in Fig. 1. Here, the case for $S_{1n} = S_{2n}/2$ is also shown. Experimetal range for S_{2n} are denoted by vertical lines [10] and possible values by arrows [8]. Another experiment suggests a value of $S_{2n} = -0.140 \pm 0.460$ MeV [13]. Experimental value for S_{2n} is rather scatterd and it is not well determined. As $\varepsilon = -(S_{2n} + \langle v_{nn} \rangle)/2$, the condition for ²¹C to be unbound is $\varepsilon > 0$, that is, $S_{2n} < -\langle v_{nn} \rangle = |\langle v_{nn} \rangle|$. This condition is satisfied for $S_{2n} < 0.3$ MeV. As for r.m.s. radius of the neutron halo, a value of 15.97+3.67/-3.97 fm was obtained from proton-carbon scattering experiment [14]. This value looks to be consistent with the present model with the closed-shell ²⁰C-core for $S_{2n} \leq 110$ keV. But, this is not the end of the story.

2.3 ²²C with correlaed ²⁰C-core

We next study the case for correlated ²⁰C. Occupation number of neutron $2s_{1/2}$ orbit is about 1[8]. It is also true for a shell-model calculation with the YSOX interaction [15]. There is a large mixing of components of $\nu 1d_{5/2}^{4}2s_{1/2}^{2}$ configurations, which lowers the ground state energy of ²⁰C. On the other hand, the halo state in ²²C is dominantly $2s_{1/2}^{2}$ configuration [8]. How to reconcile this situation?

We here adopt the following model. Halo s-orbit is occupied by two neutrons as predicted by the experiments [8]. Orthogonality condition between this halo s-orbit and the s-orbit of the ²⁰C-core state should be satisfied, that is, the core s-orbit is made orthogonal to this halo s-orbit by Gram-Schmidt method. This gives rise to blocking effects on the core states. Energy of the

Title (or short title)

²⁰C-core of the ground state of ²²C is shifted with respect to the energy of the ²⁰C ground state. This energy shift will be denoted as Δ , which should be positive due to the blocking of the $1d_{5/2}^{4}2s_{1/2}^{2}$ configurations. The two-neutron separation energy is thus reduced; $S_{2n} = -E_{nn} - \Delta$.

Fig. 1 R.m.s. radius of the halo neutron as a function of two-neutron separation energy S_{2n} . Blue dashed line and filled circles indicate the result obtained with the core of the closed-shell ²⁰C, while red solid line and filled circles the result of the core of correlated ²⁰C. The result obtained from WS potential ($S_{1n} = S_{2n}/2$) without v_{nn} is shown by the black dash-dotted line. The range of S_{2n} obtained from Ref. [10] is shown by green vertical lines. Green arrows denote values discussed in [8]. (Taken from Fig. 5 of Suzuki et al., Phys. Lett. B753 (2016) 199 [16].)

Halo and core s states are defined as

$$|s\rangle = |s_{1/2}(halo)\rangle = \alpha |2s_{1/2}(H.O.)\rangle + \beta |far-s\rangle$$

$$|\bar{s}\rangle = |s_{1/2}(core)\rangle = \beta |2s_{1/2}(H.O.)\rangle - \alpha |far-s\rangle$$
(2)

with $\langle \bar{s} | \bar{s} \rangle = 0$. In Eq. (2) |far-s> denotes the halo part of the neutron wave function whose tail extends far away from the center. For deeply bound states, $\alpha \rightarrow 1$ and $\beta \rightarrow 0$ with less $2s_{1/2}$ component in $|\bar{s}\rangle$. The ground state energy of ²⁰C is pushed up with $\Delta > 0$. As $|s_{1/2} (\text{core})\rangle$ gets halo components, two-body matrix elements of the YSOX interaction with s-components are modified. The single-particle energy of $2s_{1/2}$ orbit outside the ⁴He-core is also modified. Shellmodel calculations are performed by taking into account these modifications in configurations with protons in the p-shell and neutrons in the sd-shell. The energy shift of the ground state of ²⁰C is evaluated to be $\Delta \sim 1$ MeV.

The relation between S_{2n} and the halo radius for the correlated 20 C-core case is shown in Fig. 1 (red solid line). The condition for 21 C to be unbound gives $S_{2n} < 0.8$ MeV. Fig.1 suggests

that the r.m.s. radius of the neutron halo is 6-7 fm, which is quite small compared with the value obtained in Ref. [14]. The amount of the $2s_{1/2}$ component in $|s_{1/2}$ (core)> state is $\beta^2 \sim 40-50\%$. Recently, the matter radius of ${}^{22}C$ was re-measured, which yields 3.44 ± 0.08 fm [17] much smaller compared with the previous one, 5.4 ± 0.9 fm [14]. A smaller halo radius of 6.74+0.71/-0.48, which is consistent with the present three-body model with the correlated 20 C-core, is estimated from the recent measurement [17] and the radius of ${}^{20}C$ [11]. As dependence of the halo radius on S_{2n} is small, it is difficult to determine the value of S_{2n} from the radius.

The hypothesis of Efimov [18,19] states implies the appearance of similar states at different scales near threshold. The upper bound on the radius of the halo in the correlated-core model contradicts this hypothesis. The ground state of 22 C is already close to this upper limit, and there are no excited bound states. The state of the two-neutron halo in 22 C can be called a single Efimov state for the correlated-core case.

2.4 Spectra of ²²C

We discuss energy spectra of ²²C. Shell-model calculations with the modified two-body YSOX interaction and the modified single-particle energy of the $2s_{1/2}$ orbit are carried out for the correlated-core cases. Calculated spectra are shown in Fig. 2 as well as for the original YSOX Hamiltonian without the halo effects.

Fig. 2 Energy spectra of ²²C obtained by shell-model calculations with modified YSOX Hamiltonian. The first column is the case for the original YSOX Hamiltonian without the halo effects. Second column shows the result for the case without the correlation in ²⁰C-core, which corresponds to $\beta = 1$. The third, fourth and fifth columns are results with correlated-core. The value of β decreases while the strength of the WS potential increases for more right side.

As β becomes smaller with increasing strength of the WS potential, the energy levels of the excited states are pushed up. Occupation numbers of $2s_{1/2}$ orbit in the ground state are 0.28,

0.24 and 0.18, respectively, for the correlated-²⁰C cases in Fig. 2. The case without the correlation with $\beta = 1$ is also shown as "non-cor.-²⁰C" where the occupation number of $2s_{1/2}$ orbit is 0.94. It would be quite interesting to measure the energy of the first 2+ state. This can tell us information on how much $2s_{1/2}$ component is blocked in the correlated ²⁰C-core as well as S_{2n} from the strength of the WS potential.

3. Strength of n-n interaction and roles of three-body forces

We compare the low-energy bare n-n interaction with those in the medium. A Gaussian interaction which reproduces the scattering length and the effective range is used for the low-energy limit of n-n interaction, V_{low} . The expectation value of V_{low} for the $2s_{1/2}^2$ (J=0) state evaluated for a harmonic oscillator (H.O.) wave function ($\hbar \omega = 14$ MeV) is large in its magnitude compared with the matrix elements in conventional shell-model interactions in the medium. The matrix element $V = \langle \nu 2s_{1/2}^2; J=0 | v_{nn} | \nu 2s_{1/2}^2; J=0 \rangle$ is shown in Fig. 3 for V_{low} as well as USD [20], USDA [21], USDB [21] and SDPF-M [22]. As we see from Fig. 3, the magnitudes for the shell-model interactions are smaller than that of V_{low} by 0.7 -1.1 MeV. This difference can be attributed to the repulsion due to the effects of the three-body forces [23].

Fig. 3 Matrix elements of v_{nn} for the $2s_{1/2}^2$ (J=0) state evaluated for various interactions; V_{low} , V_{low} with three-body forces, and shell-model interactions, USD [20], USDA [21], USDB [21] and SDPF-M [22]

Contributions from the three-body forces are taken into account with the use of Fujita-Miyazawa force which is induced by Δ_{33} -isobar excitations through two-pion exchanges. The effective two-body matrix element for the valence neutron s-orbits is obtained by folding the ²⁰C core. The repulsive contributions from the three-body force reduce the attraction from V_{low}. The magnitude of the matrix element with the inclusion of the three-body force gets close to the values of the shell-model interactions for the case for harmonic oscillator radial wave functions. When the halo wave function is used for the s-orbit, the three-body force contributions become as small as 0.15 MeV, which is almost negligible. Thus for the halo in 22 C, n-n interaction remains strong enough to form the two-neutron halo.

4. Summary

We studied the formation of two-neutron halo in light drip-line nuclei, ²⁴O and ²²C, using n-n interaction fixed by the low-energy limit of n-n scattering. S_{1n} and S_{2n} in ²⁴O are found to be well reproduced by our three-body model. The structure of the ground state of ²²C is studied in two different approaches with a closed and a correlated ²⁰C. A unique relation between S_{2n} and halo radius is presented. S_{2n} is constrained to be less than 0.8 MeV (0.3 MeV) for the correlated (closed) core from the condition that ²¹C is unbound. The two-neutron halo state is successfully obtained in ²²C while ²¹C remains unbound in the present three-body model. The halo radius is obtained to be 6-7 fm for the correlated core, which is consistent with the recent measurement [17] but smaller than those estimated for the closed-core case as well as the previous measurement [14]. Thus, the inclusion of the correlation in the ²⁰C is essential to reproduce the recent experimental halo radius. Because of the existence of the upper limit of the halo radius, there are no excited bound states. The spectra for ²²C are also studied. The energy of the first 2⁺ state is pushed up as the s-state in the correlation of the ²⁰C and the value of S_{2n}.

The strength of the present low-energy limit n-n interaction is large compared with shellmodel interactions in the medium. This difference can be explained with the repulsive contributions from the three-body forces, but for halo states this contribution is small. There are, therefore, no inconsistencies between the n-n interaction used here for halos and the interactions in th medium.

This work was supported by Grants-in-Aid for Scientific Research (20244022, 22540290, 15K05090). It was supported also in part by Priority Isuue on post-K computer (hp160211) and CNS-RIKEN joint project for large-scale nuclear structure calculations. NA would like to acknowledge the JSPS Invitation fellowship program for long term research in Japan at the Tokyo Institute of Technology. CY acknowledges support from the National Natural Science Foundation of China under Grant No. 11305272.

References

- I. Tanihata et al., Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region, Phys. Rev. Lett. 55 (1985) 2676.
- [2] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J. Thompson, and J. S. Vaagen, Bound state properties of Borromean halo nuclei: ⁶He and ¹¹Li, Phys. Rep. 231 (1993) 151.
- [3] P. G. Hansen, A. S. Jensen and B. Jonson, Nuclear Halos, Ann. Rev. Nucl. Part. Sci. 45 (1995) 591.
- [4] W. Horiuchi and Y. Suzuki, ²²C: An s-wave two-neutron halo nucleus, Phys. Rev. C 74 (2006) 034311.
- [5] M. T. Yamashita et al., Constraints on two-neutron separation energy in the Borromean²²C nucleus, Phys. Lett. B 697 (2011) 90.

- [6] Y. Kucuk and J. A. Tostevin, *Intermediate energy four-body breakup calculations for* ²²C, *Phys. Rev.* C 89 (2014) 034607.
- [7] B. Acharya, C. Ji and D. R. Phillips, *Implications of a matter-radius measurement for the structure of Carbon-22, Phys. Lett.* B **723** (2013) 196.
- [8] N. Kobayashi et al., One- and two-neutron removal reactions from the most neutron-rich carbon isotopes, Phy. Rev. C 86 (2012) 054604.
- [9] R. Machleidt, High-precision charge-dependent Bonn nucleon-nucleon potential, Phys. Rev. C 63 (2001) 024001;

G. A. Miller, M. K. Nefkens and I. Alaus, *Charge symmetry, quarks and mesons, Phys. Rep.* **194** (1990) 1;

C. R. Howell et al., Toward a resolution of the neutron-neutron scattering-length issue, Phys. Lett. B 444 (1998) 252;

D. E. Gonzalez Trotter *et al.*, New Measurement of the ${}^{1}S_{0}$ Neutron-Neutron Scattering Length Using the Neutron-Proton Scattering Length as a Standard, Phys. Rev. Lett. **83** (1999) 3788.

- [10] NNDC, http://www.nndc.bnl.gov/nudat2/chartNuc.jsp
- [11] A. Ozawa et al., Nuclear size and related topics, Nucl. Phys. A 693 (2001) 32.
- [12] R. Kanungo et al., Exploring the anomaly in the interaction cross section and matter radius of ²³O, Phys. Rev. C 84 (2011) 061304.
- [13] L. Gaudefroy et al., Direct Mass Measurements of ¹⁹B, ²²C, ²⁹F, ³¹Ne, ³⁴Na and Other Light Exotic Nuclei, Phys. Rev. Lett. **109** (2012) 202503.
- [14] K. Tanaka et al., Observation of a Large Reaction Cross Section in the Drip-Line Nucleus ²²C, Phys. Rev. Lett. 104 (2010) 062701.
- [15] C. Yuan, T. Suzuki, T. Otsuka, F. Xu and N. Tsunoda, *Shell-model study of boron, carbon, nitrogen, and oxygen isotopes with a monopole-based universal interaction, Phys. Rev.* C **85** (2012) 064324.
- [16] T. Suzuki, T. Otsuka, C. Yuan and N. Alahari, *Two-neutron "halo" from the low-energy limit of neutron-neutron interaction: Applications to drip-line nuclei*²²C and ²⁴O, Phys. Lett. B **753** (2016) 199.
- [17] Y. Togano *et al.*, Interaction cross section study of the two-neutron halo nucleus ²²C, Phys. Lett. B **761** (2016) 412.
- [18] V. Efimov, Energy levels arising from resonant two-body forces in a three-body system, Phys. Lett. B 33 (1970) 563.
- [19] A. Braaten and H.-W. Hammer, *Universality in few-body systems with large scattering length, Phys. Rep.* **428** (2006) 259.
- [20] B. A. Brown and B. H. Wildenthal, *Status of the nuclear shell model*, *Ann. Rev. Nucl. Part. Sci.* **38** (1988) 29.
- [21] B. A. Brown and W. A. Richter, New "USD" Hamiltonians for the sd-shell, Phys. Rev. C 74 (2006) 034315.
- [22] Y. Utsuno, T. Otsuka, T. Mizusaki and M. Honma, Varing shell gap and deformation in N~20 unstable nuclei studied by the Monte Carlo shell model., Phys. Rev. C 60 (1999) 054315.
- [23] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk and Y. Akaishi, *Three-Body Forces and the Limit of Oxygen Isotopes, Phys. Rev. Lett.* 105 (2010) 032501.