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The existence of the permanent electric dipole moment of a fundamental particle implies violation

of time reversal invariance. The electric dipole moment of a paramagnetic neutral atom is mainly

induced by the nuclear Schiff moment. In this study the Schiff moments induced by the interaction

which violates parity and time reversal invariance are calculated for various Xe isotopes using the

shell-model wavefunctions. The contributions to the Schiff moment from one-particle and one-

hole excitations turn out to be very different from orbital to orbital. It is also found that the

contributions from the core excitations are larger than other particle-hole contributions.
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1. INTRODUCTION

The electric dipole moment (EDM) is a physical observable which violates time reversal sym-
metry. Through theCPT theorem stating that the simultaneous application of charge (C), parity
(P) and time (T) reversal operators keeps the total symmetry of a system, violation ofT reversal
symmetry is equivalent to the violation ofCP reversal symmetry. The Standard Model in particle
physics violatesCP invariance only through a single phase in the Kobayashi-Maskawa matrix that
mixes quark flavors [1]. The resultingT reversal violation is therefore expected to produce only
tiny EDMs.

At present the upper limit on the neutron EDM is experimentally 2.9×10−26ecm [2]. How-
ever, the Standard Model predicts quite a small value, 10−32ecm [3, 4, 5]. Some theories beyond
the Standard Model predict larger EDMs [3, 6, 7, 8]. Thus if an EDM is observed experimentally to
be larger than those predicted by the Standard Model, it would provide evidence for physics beyond
the Standard Model, and also places important constraints on the construction of a new physics.

EDMs originating fromCP violation in the hadron sector are searched for in neutron and
diamagnetic atoms such as129Xe, 199Hg and225Ra. Measurements of EDMs for these atoms
have been attempted and their upper limits are 4.1×10−27ecm for 129Xe [9], 7.4×10−30ecm for
199Hg [10], and 5.0× 10−22ecm for 225Ra [11]. At present with new techniques, experimental
efforts searching for EDMs of diamagnetic atoms are now in progress [12, 13, 14, 15].

The EDM of a neutral diamagnetic atom arises from the Schiff moment of the nucleus. The nu-
clear Schiff moment originates mainly from two different sources; from nucleon intrinsic EDMs,
and from the two-body nuclear interaction which violatesP andT invariance. In the latter case
theoretical calculations have been carried out for Hg, Rn, and Ra isotopes using mean field the-
ories [16, 17, 18, 19, 20, 21]. However, until recently not so many nuclei have been investigated
theoretically.

In our previous study [22], the EDMs and Schiff moments of Xe, Ba and Ce isotopes arising
from the nucleon intrinsic EDMs were calculated in terms of the nuclear shell model. The EDMs
and Schiff moments of Xe isotopes which come from interactions violatingP andT invariance
were also calculated [23, 24].

In the present article the Schiff moments of the lowest 1/2+ states for135Xe, 133Xe, 131Xe,
and129Xe nuclei are calculated assuming two-body interactions violatingP andT invariance. Par-
ticularly effects of the particle-hole excitations from the core of the nucleus are considered, which
were not considered in our previous study [23]. Furthermore, contributions to the Schiff moment
from one orbital to another is individually calculated and analyzed.

2. Theoretical framework

The Schiff moment operatorS coming from the asymmetric charge distribution in a nu-
cleus [25] is expressed in terms of spherical tensors

S(1)µ =
A

∑
i=1

ei

10

(
r2
i r(1)i,µ − 5

3

⟨
r2⟩

ch r(1)i,µ +

√
10
3

[
Q(2)

i ⊗ r(1)i

](1)
µ

)
, (2.1)

with r(1)i,µ = r iC
(1)
µ (θi ,ϕi) andQ(2)

i,µ = 2r2
i C

(2)
µ (θi ,ϕi), whereC(L)

µ represents the unnormalized spher-
ical harmonics with rankL and its projectionµ, andi represents theith nucleon. HereA is the mass
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number of a specific nucleus, andr i = (r i ,θi ,ϕi) indicatesith nucleon position. IIn this study the
Schiff moments are calculated for the lowest states with spinI = 1/2. The third term in Eq. (2.1)
vanishes for these states since there is no quadrupole moment forI = 1/2 states. Hereei is the
charge for theith nucleon.ei = e is taken for a proton andei = 0 is assumed for a neutron. The⟨
r2
⟩

ch is the mean squared radius of the nuclear charge distribution [23].
By perturbation theory, the expectation value of the Schiff moment operator is expressed as

S = ∑
T=0,1,2

S(T), (2.2)

S(T) = ∑
k

⟨
I+1
∣∣S(1)0

∣∣I−k ⟩⟨
I−k
∣∣VPT

π(T)
∣∣I+1 ⟩

E+
1 −

⟨
I−k
∣∣H0

∣∣I−k ⟩ +c.c., (2.3)

whereVPT
π(T) represents the isoscalar (T = 0), isovector (T = 1) or isotensor (T = 2) interactions

between nucleons. Here
∣∣I+1 ⟩

andE+
1 represent the wavefunction and the eigen-energy of the lowest

state with spinI and positive parity for the HamiltonianH0, respectively.
∣∣I−k ⟩

represents thekth
intermediate state with spinI and negative parity. Note that this expression is valid as long as

∣∣I−k ⟩
forms an orthonormal complete system and each state

∣∣I−k ⟩
is not necessary to be the eigenstate of

the HamiltonianH0. In the present study, onlyI = 1/2 states are considered. All these states have
their projection (spin third component)+1/2.

The lowest positive parity state,
∣∣I+1 ⟩

, is calculated using the pair-truncated shell model (PTSM)
[26, 27, 28]. The PTSM is one of the shell-model approaches, but a gigantic shell model space is
restricted to the space mainly made of only low-spin collective pairs. For single particle energies,
five orbitals between magic numbers 50 and 82 (0g7/2, 1d3/2, 1d5/2, 2s1/2, and 0h11/2) are taken
for neutrons and protons. The details of the framework and Hamiltonian for diagonalization are
given in Ref. [28] in addition to the numerical results of the energy spectra and electromagnetic
properties.

The P and T violating two-body interactionsVPT
π(T) in Eq. (2.3) are considered as follows,

which are explicitly written as [29, 30, 31],

VPT
π(0) = F0(τ1 · τ2)(σ1−σ2) · r f (r), (2.4)

VPT
π(1) = F1

[
(τ1z+ τ2z)(σ1−σ2)+(τ1z− τ2z)(σ1+σ2)

]
· r f (r), (2.5)

VPT
π(2) = F2(3τ1zτ2z− τ1 · τ2)(σ1−σ2) · r f (r), (2.6)

where

f (r) =
exp(−mπ r)

mπ r2

(
1+

1
mπ r

)
(2.7)

with r = r1− r2, andr = |r|. The coefficientsFT (T = 0,1,2) are expressed as

F0 = − 1
8π

m2
π

MN
ḡ(0)πNNgπNN, (2.8)

F1 = − 1
16π

m2
π

MN
ḡ(1)πNNgπNN, (2.9)

F2 = − 1
8π

m2
π

MN
ḡ(2)πNNgπNN, (2.10)
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whereMN is mass of a nucleon,mπ is mass of a pion, andgπNN is the strongπNN coupling
constant, and ¯g(T)πNN is the strongπNN constant which violatesP andT invariance with isospinT.

In the followingḡ(T)πNN andgπNN are denoted as ¯g(T) andg for short, respectively.
The total Schiff moment is the summation of three isospin components. In this study, Schiff

moments are evaluated as coefficients in front of ¯g(T)g,

S= a(0) ḡ(0)g+a(1) ḡ(1)g+a(2) ḡ(2)g. (2.11)

Any intermediate state
∣∣I−k ⟩

in Eq. (2.3) is represented as a one-particle and one-hole excited
state (1p1h-state) from the

∣∣I+1 ⟩
state. Since the Schiff moment operator is a one-body operator

working only on protons, it is enough to consider proton excited 1p1h-states. To evaluate the
Schiff moment in Eq. (2.3), kth intermediate 1p1h-state is given as∣∣I−k ⟩

=
∣∣(i j )K; I−

⟩
= N(K)

i j

[[
c†

iπ c̃ jπ
](K)⊗

∣∣I+1 ⟩](I)
, (2.12)

wherec†
iπ (c jπ ) represents the proton creation (annihilation) operator in the orbitali ( j), with c̃ jm =

(−1) j−mc j−m.
By nelecting the residual interaction, the energy denominator in Eq. (2.3) is approximately

treated asE+
1 −

⟨
I−k |H0| I−k

⟩
∼ (−Ei j ) whereEi j ≡ εi − ε j represents the single particle-hole exci-

tation energies from oribitalj to i. Then Eq. (2.3) is written as

S(T) = ∑
Ki j

⟨
I+1
∣∣S(1)0

∣∣I−k ⟩⟨
I−k
∣∣VPT

π(T)
∣∣I+1 ⟩

(−Ei j )
+c.c. (2.13)

To calculate Eq. (2.13), three types of 1p1h-excitations are considered. The first type is a
set of excitations from an orbital between 50 and 82 to an orbital over 82. These excitations are
called type-I excitations. The second type is a set of excitations from an orbital under 50 to an
orbital between 50 and 82. These excitations are called type-II excitations. The third type is a set
of excitations from an orbital under 50 to an orbital over 82. These excitations are called type-
III excitations. Note that excitations among orbitals between 50 and 82 are vanished since these
orbitals are not connected by the Schiff moment operator.

For the type-I excitation, an intermediate state is explicitly written as∣∣I−k ⟩
type-I = N(K)

ph

[[
a†

pπ c̃hπ
](K)⊗

∣∣I+1 ⟩](I)
. (2.14)

Herea†
pπ represents the proton creation operator in the orbitalp, wherep indicates an orbital over

82. c̃hπ represents the proton annihilation operator in the orbitalh, whereh indicates an orbital
between 50 and 82. For the type-II excitation, an intermediate state is written as∣∣I−k ⟩

type-II = N(K)
ph

[[
c†

pπ b̃hπ
](K)⊗

∣∣I+1 ⟩](I)
. (2.15)

Herec†
pπ represents the proton creation operator in an orbitalp, wherep indicates an orbital be-

tween 50 and 82.̃bhπ represents the proton annihilation operator in the orbitalh, whereh indicates
an orbital under 50. For the type-III excitation, an intermediate state is written as∣∣I−k ⟩

type-III = N(K)
ph

[[
a†

pπ b̃hπ
](K)⊗

∣∣I+1 ⟩](I)
. (2.16)
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Table 1: Calculated results ofatype-I
(T) (p) from each orbitalp in the shell over 82 (type-I excitations) for

129Xe (in units of 10−3efm3).

T 1 f7/2 0h9/2 0i13/2 2p3/2 1 f5/2 1p1/2 1g9/2 0i11/2

0 +0.107 +0.265 −0.007 +0.079 +0.385 +0.055 +0.018 +0.001
1 +0.047 +0.107 −0.005 +0.049 +0.153 +0.020 +0.008 +0.000
2 +0.176 +0.380 −0.025 +0.214 +0.531 +0.063 +0.027 +0.000

T 1h9/2 2 f5/2 2 f7/2 3p1/2 3p3/2 1i11/2 1i13/2 2g9/2

0 +0.406 −0.062 +0.076 −0.013 +0.002 +0.000 +0.010−0.001
1 +0.184 −0.025 +0.050 −0.001 −0.007 +0.000 +0.007 −0.000
2 +0.699 −0.089 +0.222 +0.007 −0.045 +0.000 +0.032 −0.001

All orbitals under the magic number 50 are considered for core orbitals. However, 0d3/2, 1s1/2,
and 0s1/2 orbitals are not connected by the Schiff moment operator.

3. NUMERICAL RESULTS

To analyze the contribution to the Schiff moments from each orbital, firstly a partial contribu-
tion of the excitation from any orbital (h) between 50 and 82 to a specific orbital (p) over 82 (type-I
excitations) is defined as

stype-I
(T) (p) = ∑

Kh

⟨
I+1
∣∣S(1)0

∣∣I−k ⟩⟨
I−k
∣∣VPT

π(T)|I
+
1

⟩
(−Eph)

+c.c., (3.1)

which is rewritten in terms of ¯g(T)g as, stype-I
(T) (p) = atype-I

(T) (p) ḡ(T)g, where andatype-I
(T) (p)’s are

coefficients so determined in evaluating the partial Schiff momentstype-I
(T) (p).

Secondly, a partial contribution of the excitation to any orbital (p) between 50 and 82 from a
specific orbital (h) under 50 (type-II excitations) is defined as

stype-II
(T) (h) = ∑

Kp

⟨
I+1
∣∣S(1)0

∣∣I−k ⟩⟨
I−k
∣∣VPT

π(T)
∣∣I+1 ⟩

(−Eph)
+c.c., (3.2)

which is rewritten in terms of ¯g(T)g as,stype-II
(T) (h) = atype-II

(T) (h) ḡ(T)g.
Finally, a partial contribution of the excitation from a specific orbital (h) under 50 to any orbital

(p) over 82 (type-III excitations) is also defined as

stype-III
(T) (h) = ∑

Kp

⟨
I+1
∣∣S(1)0

∣∣I−k ⟩⟨
I−k
∣∣VPT

π(T)
∣∣I+1 ⟩

(−Eph)
+c.c., (3.3)

which is rewritten in terms of ¯g(T)g asstype-III
(T) (h) = atype-III

(T) (h) ḡ(T)g.

Table1 shows calculatedatype-I
(T) (p) for 129Xe. The contributions from the 1f7/2, 0h9/2, 1f5/2

and 1h9/2 orbitals are large since the most orbitals are positive in the 50-82 major shell. Table2
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Table 2: Calculated results ofatype-II
(T) (h) from each orbitalh in the shell under 50 (type-II excitations) for

129Xe (in units of 10−3efm3).

T 0g9/2 1p1/2 0 f5/2 1p3/2 0 f7/2 0p1/2 0p3/2

0 −3.642 +0.621 +1.964 +1.443 +0.883 +0.648 +0.982
1 −2.022 +0.511 +0.867 +0.502 +0.473 +0.273 +0.536
2 −8.488 +2.444 +3.239 +1.568 +1.953 +0.988 +2.236

Table 3: Calculated results ofatype-III
(T) (h) from each orbitalh in the shell under 50 (type-III excitations) for

129Xe (in units of 10−3efm3).

T 0g9/2 1p1/2 0 f5/2 1p3/2 0 f7/2 0d3/2 1s1/2 0d5/2

0 −0.090 −0.134 −0.008 −0.336 −0.029 +0.055 −0.416 −0.036
1 +0.007 +0.060 −0.028 −0.146 −0.018 +0.020 −0.389 −0.028
2 +0.134 +0.491 −0.015 −0.537 −0.076 +0.064 −1.918 −0.133

Table 4: Calculated results ofa(T) for the lowest 1/2+ states (in units of 10−3efm3). Previous results (aprev
(T) )

are taken from Ref. [23].

T atype-I
(T) atype-II

(T) atype-III
(T) a(T) aprev

(T)

0 +2.357 +0.670 −1.057 +1.969 +0.630
135Xe 1 +1.297 +1.693 −0.602 +2.389 +0.323

2 +5.427 +9.490 −2.554 +12.363 +1.31

0 +1.812 +1.716 −1.047 +2.481 +0.464
133Xe 1 +0.949 +1.510 −0.578 +1.882 +0.285

2 +3.982 +7.343 −2.419 +8.906 +1.24

0 +1.575 +2.097 −0.968 +2.704 +0.514
131Xe 1 +0.787 +1.282 −0.530 +1.539 +0.352

2 +3.145 +5.596 −2.177 +6.564 +1.60

0 +1.322 +2.897 −0.978 +3.242 +0.507
129Xe 1 +0.586 +1.140 −0.522 +1.204 +0.399

2 +2.192 +3.940 −1.961 +4.172 +1.89

shows calculatedatype-II
(T) (h) for 129Xe. The contribution from the 0g9/2 orbital becomes the largest.

The 0g9/2 orbital is connected to the 0h11/2 orbital by the Schiff moment operator. The orbitals
which demand large 1p1h-excitation energies (like 0p3/2 and 0p1/2 orbitals) also have considerable

contributions. Table3 shows calculatedatype-III
(T) (h) for 129Xe. These contributions are not so large

compared to results in Table2.
Table4 shows the calculated results ofa(T) for the lowestI = 1/2 states of Xe isotopes. Here,

using Eqs. (3), (3), and (3), a(T) is given by

a(T) = atype-I
(T) +atype-II

(T) +atype-III
(T) , (3.4)

with atype-I
(T) = ∑patype-I

(T) (p), atype-II
(T) = ∑hatype-II

(T) (h), andatype-III
(T) = ∑hatype-III

(T) (h). The contributions
of the core excitations are a few times larger than those from the over-shell excitations for most of
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Table 5: The comparison ofa(T)’s for 129Xe between present results (This work), our previous results
(prev.) [23], and the results by Dmitrievet al. with core polarization (core) and without core polarization
(bare) [21] in units of 10−3efm3. The isotensor (T = 2) component in [21] is changed from its original sign
in accordance with the different sign definition of the isotensor (T = 2) interaction in the present study.

T This work prev. [23] bare [21] with core [21]

0 +3.242 +0.507 +60 +8
1 +1.204 +0.399 +60 +6
2 +4.172 +1.89 +120 +9

the isospin components. The isotensor (T = 2) components are largest for all nuclei. The previous
results [23] are also shown in Table4. By comparing the present results with the previous ones,
some contributions of Schiff moments are found to be nearly one order of magnitude larger than the
previous ones (for examples, isotensor components of135Xe and133Xe). The isoscalar component
for 129Xe becomes 6.4 times larger than the previous one.

The present results, our previous results [23] and results by Dmitrievet al. [21] are compared
for 129Xe in Table5. The present result is summarized asS= 3.24 ḡ(0)g+1.20 ḡ(1)g+4.17 ḡ(2)g
(in units of 10−3efm3) for 129Xe. In the previous work [23], the Schiff moment of129Xe was cal-
culated asS= 0.51 ḡ(0)g+0.40 ḡ(1)g+1.89 ḡ(2)g (in units of 10−3efm3). The difference between
the present study and the previous one is due to improvement of the model space adopted in the
calculation.

4. SUMMARY

In the present study the nuclear Schiff moments induced by the interaction which violates
parity and time reversal invariance are calculated for the lowest 1/2+ states of Xe isotopes. The
wavefunctions of Xe isotopes are calculated in terms of the nuclear shell model approach. Excita-
tions from orbitals between the magic numbers 50 and 82 to orbitals over 82 (type-I excitations),
the excitations from orbitals under 50 to orbitals between the magic numbers 50 and 82 (type-II
excitations), and the excitations from orbitals under 50 to orbitals over 82 (type-III excitations)
are considered for the one-particle and one-hole excitations. It is found that the contributions of
type-II excitations are a few times larger than those from the type-I and type-III excitations. The
contribution of excitation from the 0g9/2 orbital to the 0h11/2 orbital is the largest. It is also found
that the excitations which require large excitation energies have negligible contributions.
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