Study of halo nature via reaction and neutron removal cross sections

Takuma Matsumoto
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
E-mail: matsumoto@phys.kyushu-u.ac.jp

Shin Watanabe
RIKEN Nishina Center

Masanobu Yahiro
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

We analyzed the reaction and neutron removal cross sections for $^{14,15,16}\text{C}$ scattering by the continuum-discretized coupled-channels and eikonal reaction theory. In the analysis, breakup effects of ^{15}C is significant to reproduce the experimental data. For ^{16}C, we found that main configuration of the ground state is the d-dominant, in which the valence two neutrons are in the $0d_{5/2}$-orbit. We also investigated validity of the new definition of H. In higher incident energies, we confirmed that the new definition is useful.
1. Introduction

Neutron-rich nuclei near the neutron dripline have exotic properties such as halo structure \([1, 2]\) and shell evolution \([3]\). Elucidation of these properties has been much attracted. The measurement of reaction cross section \(\sigma_R\) is a powerful experimental tool for not only determining matter radii of nuclei but also searching for halo nuclei. In addition, theoretical analyses for \(\sigma_R\) are easier compared with other reactions. Recently \([4, 5, 6, 7]\), we analyzed \(\sigma_R\) for the scattering of Ne and Mg isotopes from a \(^{12}\)C at 240 MeV/nucleon \([8, 9]\) by the double-folding model based on the Melbourne \(g\)-matrix \([10]\) with no free parameter, and well reproduced the experimental data. In the analyses, enhancements of \(\sigma_R\) for \(^{31}\)Ne and \(^{37}\)Mg comparing with neighboring isotopes have been seen, and then \(^{31}\)Ne and \(^{37}\)Mg are expected to be halo nuclei with large deformation.

As other useful tool for investigating halo structure, there is the neutron removal reaction, \(\sigma_{\text{rmv}}\). For halo nuclei, the neutron removal cross section is also enhanced as same as the reaction cross section. The enhancement of \(\sigma_{\text{rmv}}\) corresponds to the weak binding mechanism of halo nuclei, meanwhile the enhancement of \(\sigma_R\) represents the large radius. Thus a lot of experimental studies on measuring of \(\sigma_R\) and \(\sigma_{\text{rmv}}\) have been performed to explore new halo nuclei \([11, 12]\), and the sudden enhancement of \(\sigma_R\) and \(\sigma_{\text{rmv}}\) is one of good indicator of searching of halo nuclei.

For theoretically, the Glauber model \([13]\) has been applied to analyse for \(\sigma_R\) and \(\sigma_{\text{rmv}}\) so far. Recently the eikonal reaction theory (ERT) \([14]\) has been proposed to treat Coulomb breakup effects accurately, which cannot be described by the Glauber model. In ERT, Coulomb breakup processes are described by the continuum-discretized coupled-channels method (CDCC) \([15]\). In this work, we report analyses of \(\sigma_R\) and \(\sigma_{\text{rmv}}\) for \(^{14,15,16}\)C scattering with ERT and CDCC. In the present calculation, \(^{15}\)C is described by the \(^{14}\)C + \(n\) two-body model, and \(^{16}\)C by the \(^{14}\)C + \(n + n\) three-body model. We also discuss the structure of \(^{15}\)C and \(^{16}\)C, and relationship between the enhancement of \(\sigma_{\text{rmv}}\) and the halo structure.

2. Theoretical Framework

For the scattering of \(^{15}\)C and \(^{16}\)C, we assume the \(n + ^{14}\)C two-body model for \(^{15}\)C and the \(n + n + ^{14}\)C three-body model for \(^{16}\)C. The Schrödinger equation for the scattering on a target (T) is defined as

\[
(H - E)\Psi = 0
\]
(2.1)

for the total wave function \(\Psi\), where \(E\) is an energy of the total system. The total Hamiltonian \(H\) is defined by

\[
H = K_R + U + h,
\]
(2.2)

where \(h\) denotes the internal Hamiltonian of \(^{15}\)C or \(^{16}\)C, \(R\) is the center-of-mass coordinate of the projectile relative to T. The kinetic energy operator associated with \(R\) is represented by \(K_R\), and \(U\) is the sum of interactions between the constituents in the projectile (P) and T defined as

\[
U = U_n(R_n) + U_{14C}(R_{14C}) + \frac{e^2Z_PZ_T}{R},
\]
(2.3)
for 15C and
\[
U = U_{n_1}(R_{n_1}) + U_{n_2}(R_{n_2}) + U_{14C}(R_{14C}) + \frac{e^2 Z_p Z_T}{R}
\]
(2.4)
for 16C, where $U_x (x = n, n_1, n_2; ^{14}$C) is the nuclear part of the optical potential between x and T as a function of the relative coordinate R_x.

The optical potential U_x is constructed microscopically by folding the effective g-matrix nucleon-nucleon interaction based on chiral nucleon force [16] with densities of x and T. For 14C, the matter density is determined by the HFB calculation with the Gogny-D1S interaction [17], where the center-of-mass correction is made in the standard manner [6]. The folding potentials thus obtained include the nuclear-medium effect. CDCC with these microscopic potentials is the microscopic version of CDCC. In CDCC, the total scattering wave function Ψ is expanded in terms of finite number of internal wave functions of P including bound and discretized continuum states. The details of CDCC are shown in Ref. [15].

For the 14C + n two-body model of 15C, the Pauli-forbidden states are excluded by the orthogonality condition model (OCM) [18]. The Hamiltonian is
\[
h_2 = K_\rho + V_{nc},
\]
(2.5)
where K_ρ is the kinetic-energy operator with respect to the relative coordinate ρ between n and the core nucleus (14C). The interaction V_{nc} between n and 14C is taken from Ref. [19], and well reproduces properties of the ground and 1st-excited states of 15C. The matter radius of 15C predicted by this model is $\bar{r}(^{15}$C) = 2.87 fm that is much larger than $\bar{r}(^{14}$C) = 2.51 fm.

For 16C, the Hamiltonian is
\[
h_3 = K_{\rho_1} + K_{\rho_2} + V,
\]
(2.6)
which consists of the kinetic-energy operators K_{ρ_1} and K_{ρ_2} with respect to two Jacobi coordinates and the interaction V defined by
\[
V = V_{n_1n_2} + V_{n_1c} + V_{n_2c} + V_3,
\]
(2.7)
where $V_{n_1n_2}$ is the two-nucleon force acting between two valence neutrons, n_1 and n_2, and V_{n_1c} (V_{n_2c}) is the interaction between n_1 (n_2) and 14C. We use the Bonn-A two-nucleon force [20] as $V_{n_1n_2}$ and the nucleon–14C interaction of Ref. [19] as V_{n_1c} and V_{n_2c}. The interaction V_3 is the 3BF acting among n_1, n_2, and 14C. The three-body wave function of 16C is antisymmetrized for the exchange between n_1 and n_2. Meanwhile the exchange between each valence neutron and each nucleon in 14C is treated approximately by OCM.

For the configuration of valence neutrons of 16C, we construct two types of the ground state wave function of 16C by optimizing V_3. One is called “the s-dominant”, where the valence two neutrons are in the $1s_{1/2}$ orbit mainly. For another wave function referred as “the d-dominant”, the valence two neutrons are in the $0d_{5/2}$ orbit mainly. The detail of the calculation is shown in Refs. [21], [22]. In the present analysis, we discuss which is better configuration.
3. Results and Discussions

Figure 1 shows reaction cross sections for 14,15,16C scattering on 12C and 28Si targets. For 15C and 16C, the open marks show the result without breakup effects, meanwhile the solid marks represent the result calculated by CDCC. For 15C, one sees that breakup effects are significant to reproduce the experimental data. For 16C, the triangle and circle show the result with the s-dominant and d-wave configurations, respectively. Breakup effects for the s-dominant are much larger than those for the d-dominant, and for 28Si target the result with the s-dominant overestimates the experimental data. As the result, main configuration of valence two neutrons of 16C is expected to be $(0d_{5/2})^2$.

Figure 1: Reaction cross sections σ_R for 14,15,16C + 12C scattering at 83 MeV/nucleon (right panel) and for 14,15,16C + 28Si at about 50 MeV/nucleon (left panel). The experimental data are taken from Ref. [23] for 12C target and Ref. [24] for 28Si target.

In Ref. [25], we proposed a measureable parameter \mathcal{H} quantifying the halo nature of one-neutron halo nuclei. The \mathcal{H} is defined by

$$\mathcal{H} = \frac{\sigma_{\text{abs}}(a) - \sigma_{\text{abs}}(c)}{\sigma_{\text{abs}}(n)},$$

(3.1)

where $\sigma_{\text{abs}}(x)$ means the absorption cross section for a particle x, and a is a one-neutron halo nucleus described as the $c + n$ two-body model. We investigated the one-neutron separation energy (S_n) dependence of \mathcal{H}, and found that the most developed halo represented by $\mathcal{H} = 1$ is realized only for s-wave halo nuclei in $S_n = 0$ limit. Thus \mathcal{H} is expected to be a new indicator of the halo structure.

In this paper we propose a new definition of \mathcal{H} with the one-neutron stripping cross section, $\sigma_{1n-\text{str}}$, as

$$\mathcal{H} = \frac{\sigma_{1n-\text{str}}(a)}{\sigma_{\text{abs}}(n)},$$

(3.2)
Figure 2: Comparison of one-neutron stripping cross sections with the difference between absorption cross sections for 15C and 14C.

In the Galuber approximation, σ_{1n-str} can be approximated by $\sigma_{abs}(a) - \sigma_{abs}(c)$ in high incident energies. To check the validity of the new definition of H, we calculate σ_{1n-str} for 15C by using the eikonal reaction theory, and the difference between absorption cross sections for 15C and 14C. In Fig. 2, the incident energy dependence of σ_{1n-str} (solid circles) and $\sigma_{abs}(^{15}C) - \sigma_{abs}(^{14}C)$ (solid squares) is shown. One sees that the above two cross sections are in good agreement with each other at 200 MeV/nucleon. The difference below 100 MeV/nucleon comes from the breakup cross section mainly. In this analysis, validity of new definition of H is confirmed when the incident energy is higher than 200 MeV/nucleon.

4. Summary

We analyzed the reaction and neutron removal cross sections for 14,15,16C scattering by the continuum-discretized coupled-channels and eikonal reaction theory. In the present calculation, the reaction cross sections for 15C is well reproduced by CDCC with breakup effects. Furthermore we found that main configuration of the ground state of 16C is the d-dominant, in which the valence two neutrons are in the $0d_{5/2}$-orbit. Finally, we investigated validity of the new definition of H. In higher incident energies, we found that the new definition is useful.

References

