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Radioactive ion beams of weakly bound nuclei are now being used to investigate properties of nu-

clear systems well off of the valley of stability. Those ionscan and do have low excitation spectra

that involve particle unstable resonances. We seek to describe the spectra of the compound sys-

tems formed, and the low energy scattering cross sections for clusters formed coupling a nucleon

or anα-particle with such weakly bound systems.
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Scattering with resonance target states Ken Amos

1. Introduction

We have investigated the role of target states being resonances by developing a method in
which those resonance characteristics can be taken into account in coupled-channel descriptions of
the compound systems formed by those nuclei with nucleons and with α-particles. The method is
an adaptation of a multi-channel algebraic scattering (MCAS) theory with which coupled-channel
Lippmann-Schwinger equations for the clusters of a nucleon, or anα-particle, and a nucleus can be
solved. Using MCAS, the spectra (bound and resonant) of the compound system can be found as
can the scattering cross sections from the target nucleus or, by inverse kinematics, of a radioactive
ion from hydrogen or anα-particle.

2. Theory

The MCAS method [1, 2] solves coupled channel Lippmann-Schwinger equations for a chosen
two-body system. The theory is built upon a sturmian expansion of the given choice of interaction
matrix of potential functions for the system. The set of sturmians that form the basis of the expan-
sions are determined from the self-same matrix of potentials and, if necessary, can be selected to
ensure that the Pauli principle is not violated. The approach, most suited to deal with low energies,
is noteworthy because its formulation facilitates a systematic determination of all sub-threshold
bound states and compound resonances within any energy range considered.

While the required starting matrix of potentials may be constructed from any model of nuclear
structure, to date we have used just a simple collective rotation model to define those potentials
allowing deformation therein to second order. We start withcoordinate space potentials which for
a nucleon-nucleus system has the basic form

Vcc′(r) = f (r)

{

V0δcc′ +Vll [ℓ · ℓ]cc′ +Vss [s · I]cc′

}

+
1
r

d f (r)
dr

Vls [ℓ · s]cc′ , (2.1)

for each channel (c) where c denotes a unique set of quantum numbers. A deformed Woods-Saxon
form has been used for the functionf (r). A similar interaction but with different operators is used
in theα-nucleus case.

To consider nucleon andα-particle interactions with a (light mass) nuclei, we suppose that
the collective (rotational) model describes the ’target’ nucleus. Without additional features, solu-
tions of coupled-channel equations built from local interactions can involve violation of the Pauli
principle with the extra core particle being allowed to occupy already occupied orbits [1]. That
can be prevented by including orthogonalising pseudo-potentials (OPP) [3] in the Hamiltonian.
By solving the Lippmann-Schwinger equations in momentum space, the method defines both the
bound (to particle emission) and scattering states of the compound nucleus. Bound states of the
compound system can be found using negative energies when all channels are closed. For posi-
tive energies, to systematically identify all resonance structures of the compound system, we use a
spectral representation of theT -matrix in terms of complex sturmian eigenvalues.

Sets of sturmian functions,Φc′n(r) and their eigenvaluesηn, are determined from the coupled-
channel interactions,Vcc′(r). For practical reasons we choose a set (n) of finite rank, with entries
being those having largest magnitudes ofηn. These are used to define the form factors in the
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expansion of the same coupled-channel interactions. The form factors, in momentum space,χ̂cn(p),
are the Fourier-Bessel transforms of

χcn(r) = ∑
c′=1

Vcc′(r) Φc′n(r). (2.2)

The sturmian eigenvalues,ηi are found using the Green’s function

[G0]nn′ = µ

[

open

∑
c=1

∫ ∞

0
χ̂cn(x)

x2

k2
c − x2+ iε

χ̂cn′(x) dx −

closed

∑
c=1

∫ ∞

0
χ̂cn(x)

x2

h2
c + x2 χ̂cn′(x) dx

]

,

kc =
√

µ (E − εc) ; hc =
√

µ (εc −E), (2.3)

being wave numbers.εc is the target state centroid andE is the ‘projectile’ energy. With these form
factors, the momentum space expansion of the non-local interaction matrices is

Vcc′(p,q) = ∑
n

χ̂cn(p)
1

ηn
χ̂c′n(q) (2.4)

and theT -matrix follows as

Tcc′ ∝ ∑
nn′

√

kcχ̂cn(kc)
(

[η−G0]
−1
)

nn′
χ̂c′n′(kc′)

√

kc′ . (2.5)

Here[η ]nn′ = ηnδnn′ . The spectrum of the compound system is found from properties of the resol-
vent in theT -matrix, i.e.[η −G0]

−1.
With systems such asn+12C forming13C, a Hamiltonian has been found [1] which, when used

in MCAS evaluations of theT -matrices, leads to a very good representation of the spectrum of 13C
(bound and resonant to over 4 MeV incident energy). Also the measured scattering cross section
in that low energy range was well reproduced. An example is given later. But in the low-energy
and low-mass regime where compound-system resonances are important, it is appropriate to take
particle instability of target states into account. In basic form [4], this has been done by replacing
the target state energy in the resolvent,εc → εc + i1

2Γc, so that the Green’s functions become

[G0]nn′ = µ

[

open

∑
c=1

∫ ∞

0
χ̂cn(x)

x2
[

k2
c − x2− i µ

2 Γc
]

[k2
c − x2]

2
+ µ2

2 Γ2
c

χ̂cn′(x) dx

−

closed

∑
c=1

∫ ∞

0
χ̂cn(x)

x2
[

h2
c + x2+ i µ

2 Γc
]

[h2
c + x2]2+ µ2

2 Γ2
c

χ̂cn′(x) dx

]

. (2.6)

This equation has no poles on the real axis, and integration may proceed normally. But the target
state widths of the Lorentz form do not vanish atE = 0 and that can lead to non-physical attributes
in the evaluated compound spectra and scattering cross sections. The energies of bound states can
also be affected causing some to have spurious widths.

To overcome these non-physical behaviours, a scaling factor is applied to target-state widths [5],
so that the target states are described usingεc → εc + i1

2U(E)Γc where minimum conditions are to
be placed the scaling function, namely

U(E = 0) = 0 ;
dU(E →+0)

dE
→ 0 ; U(εc) = 1 ; U(E → ∞) = 0 . (2.7)
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The first two conditions eliminate spurious behaviour in thereaction cross sections at low energies.
The use of energy-dependent widths necessitates an energy-dependent addition to the target-

state centroid, and so changing the energy factor in the resolvent of the Green’s functions as
εc → εc + ∆εc(E) + i1

2U(E)Γc. This extension is needed because the Green’s functions define
the sturmian eigenvalues of the expansion of the potential,thus making the interactions involving
the target states complex. In effect they become optical potentials. Energy-dependent imaginary
components in optical potentials lead to wave equations that violate causality unless the potentials
are constrained by addition of a dispersion-relation correction.

With MCAS, the dispersion relation is an energy-dependent adjustment of the target-state
centroid energy,∆εc(E), given by the principal part integral,

∆εc(E) =
Γc

2
1
π

P

∫ ∞

0

U(E ′)

E ′−E
dE ′. (2.8)

The wave numbers of Eq. (2.3) when target states are resonances are given by

kc =
√

µ (E − εc−∆εc(E)) ; hc =
√

µ (εc +∆εc(E))−E. (2.9)

One candidate for an energy-dependent target-state width scaling is a Wigner distribution,

U(E) = em
(

E
εc

)n

e − m( E
εc )

n

H (E). (2.10)

With m andn positive integers, this meets the necessary conditions. The Heaviside function ensures
proper bound-state properties since, without it, the Green’s functions are complex forE ≤ 0.

More details of this method and applications are given in a recent publication [6].

3. Results

3.1 A gedanken case; n+12C

Past MCAS studies gave very good representation of the boundand low excitation resonant
structure of13C as illustrated in Fig. 1. In those MCAS calculations, threestates of12C were
taken into account. They are the ground 0+, the 2+1 (4.44 MeV), and the 0+2 (7.76 MeV) states.
Those states all lie below and particle emission threshold so the results shown do not involve target
states having widths.Gedanken calculations have been made taking the 2+

1 and 0+2 states to be
resonances. The effect of introducing particle emissive widths to these states immediately affects
results, especially reaction cross sections, as seen in Fig. 2. With no resonance character in the
target states the reaction cross section becomes non-zero only above the energy of the first excited
target state, at 4.81 MeV (lab. frame). When target-state widths are allowed the reaction cross
section becomes non-zero for all projectile energies, withstructure increasing with the small width
values shown. With larger widths the reaction cross sectiondegenerates to a smoothly rising form
(from E = 0) having a broader shape to the resonance in the 4−5 MeV region. In all cases, the
reaction cross section vanishes smoothly asE → 0 provided the causality conditions are met.

Now we consider target nuclei that have particle emissive resonant states in their low-lying
spectrum. Specifically we have used8Be and6He as targets in MCAS cluster model calculations.
The low lying spectra of these two nuclei are shown in Fig. 3. With each, the lowest three states
have been used in MCAS evaluations.

3



P
o
S
(
I
N
P
C
2
0
1
6
)
2
0
2

Scattering with resonance target states Ken Amos

10
-3

10
-2

10
-1

10
0

E
lab

(MeV)

0

2

4

6

8

σ el
as

tic
 (

b)

0 1 2 3 4 5

5/2
_

5/2
+

7/2
+

1/2
_

3/2
+

3/2
+

9/2
+

5/2
+

Figure 1: Low energyn+12C scattering shown on logarithmic (left) and linear (right)scales of energy.
Spin-parities of states listed; red values interchanged inexperimental list.
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Figure 2: Low energyn+12C reaction scattering cross sections when the excited states are resonances.

3.2 Results for the n+8Be system

With a model interaction that gives a reasonable match to thefive lowest states in the spectrum
of 9Be, the MCAS cross sections forn-8Be scattering are shown in Fig. 4.

By taking the states of8Be as having no widths, the elastic scattering cross sectionis very structured
showing resonances clearly. The reaction cross section is zero until the first excitation is possible.
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Figure 3: Low energy spectra:8Be and6He.

When the (two excited) target states have
Lorentzian shapes results change markedly.
The elastic scattering cross section now is
featureless and the reaction cross section is
non-zero from zero projectile energy but at low
energies the asymptotic behaviour is
unphysical. However, by using the energy
weighted scaling factor to ensure causality,
while also giving a non-zero reaction cross
section fromE = 0, there is no erroneous
asymptotic rise in the reaction cross section
near threshold. Causality restoration, by
altering centroids, affects the shape of the cross
sections, with consequences for the parameters
required in defining the scattering-potentials.
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Figure 5: n+6He scattering cross sections: elas-
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3.3 Results for the n+6He system

Calculations ofn+6He were made and cross section results are shown in Fig. 5. Theinterac-
tions were set so that the full (causality) result gave the best match to the (few) known states of
the particle missive compound,7He. Using no widths for the (two excited) target states with this
interaction made the ground state of the compound almost be bound while using solely Lorentzian
forms, which gave a reasonable ground state energy, smoothed out any resonance structure in the
cross sections. But with the scaling factor ensuring causality, the cross sections not only gave the
7He ground state resonance centroid correctly but also its width.
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3.4 Results for the α-6He system

MCAS has now been developed to have theα-particle as a member of the cluster and an
interaction found that leads to the spectra given in Fig. 6. The threshold forα break-up in10Be lies
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Figure 6: Spectra of10Be from theα-6He cluster calculations compared with experiment.

some 7 MeV above its ground. Our MCAS results match the lowestsix bound states quite well but
give more states in the continuum than observed. Most do not seem to contribute significantly to
scattering cross sections however. Data have been obtainedusing a radioactive ion beam of6He,
which, by using inverse kinematics, in Fig. 7 compare favourably with our MCAS calculations.
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4. Conclusions

Applications of the MCAS theory have been made to discern thestructure of the compound
nuclei underlying various di-cluster nuclear systems of light mass. Despite the simplicity of the
collective model used to specify the input matrix of interaction potentials, good agreement has
been found with available data, even regarding a nucleus lying beyond the proton drip line.

The method used accounts for particle-unstable states in a (target) nucleus undergoing low-
energy resonant scattering. By choosing an appropriate target-state resonance shape modifying the
usual Lorentzian shape of a resonance state consistent withphysically realistic conditions, results
are free of any unphysical behaviour at the scattering threshold. This modification can violate
causality but that is restored by using a dispersion relation to define an energy correction.

This method gives scattering cross sections that are markedly different from those found when
particle instability (of a target nucleus state) is not considered. Compound-system resonances
decrease in magnitude and increase in width, with otherwisenarrow resonances becoming obscured
into the scattering background. In a case studied improved agreement between calculated and
observed widths of resonances in the compound system resulted.

When using parameter-driven scattering potentials, the effects of the target-state resonance
shape, and in the case of energy-dependent modified Lorentzians, the correction is to restore causal-
ity, are non-trivial. Compound spectra associated with, and scattering cross sections from, weakly-
bound radioactive ion beams with light-mass targets shouldbe influenced by these considerations.
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