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The Pauli exclusion principle is known to generate a repulsion (called “Pauli repulsion” here-
after) between nuclei at short distance [1]. The Pauli repulsion should then be included in the
nucleus-nucleus potentials used to model reactions such as (in)elastic scattering, (multi)nucleon
transfer, and fusion. However, Pauli repulsion is usually neglected in these models: it has been
argued that the outcome of a collision between nuclei is mostly determined at a distance where
the nuclei do not overlap much and thus the effects of the Pauli exclusion principle are minimized.
This argument is based on the assumption that nuclei do not necessarily probe the inner part of
the fusion barrier. This argument may not be valid for deep sub-barrier energies where the inner
turning-point of the fusion barrier entails significant overlap between the two nuclei [2, 3].

Using a realistic microscopic approach to compute nucleus-nucleus bare potentials, we show
that, in fact, the Pauli repulsion plays an important role on fusion at deep sub-barrier energies. In
particular, it provides a natural (though only partial) explanation for the experimentally observed
deep sub-barrier fusion hindrance [4, 5, 6] (see Ref. [7] for a review). Various theoretical expla-
nations have been proposed to explain this effect [8, 9, 5, 10, 11, 12, 13]. However, none of them
directly consider Pauli repulsion as a possible mechanism.

In order to investigate the effect of Pauli repulsion on heavy-ion fusion, we introduce a novel
microscopic method called density-constrained frozen Hartree-Fock (DCFHF) to compute the in-
teraction between nuclei while accounting exactly for the Pauli exclusion principle between nu-
cleons. The microscopically derived bare nucleus-nucleus potential including Pauli repulsion is
then used to study deep sub-barrier fusion. For simplicity, we focus on systems with doubly-
magic nuclei which are spherical and non-superfluid: 16O+16O, 40,48Ca+40,48Ca, 16O+208Pb, and
48Ca+208Pb.

To avoid the introduction of new parameters, we adopt the idea of Brueckner et al. [14] to
derive the bare potential from an energy density functional (EDF) E[ρ] written as an integral of an
energy density H [ρ(r)], i.e.,

E[ρ] =
∫

dr H [ρ(r)] . (1)

The bare potential is obtained by requiring frozen ground-state densities ρi of each nucleus (i= 1,2)
which we compute using the Hartree-Fock (HF) mean-field approximation [15, 16]. The Skyrme
EDF [17] is used both in HF calculations and to compute the bare potential. It accounts for the bulk
properties of nuclear matter such as its incompressibility which is crucial at short distances [14,
8, 18]. Neglecting the Pauli exclusion principle between nucleons in different nuclei leads to the
usual frozen Hartree-Fock (FHF) potential [19, 20, 21, 22]

VFHF(R) =
∫

dr H [ρ1(r)+ρ2(r−R)]−E[ρ1]−E[ρ2], (2)

where R is the distance vector between the centres of mass of the nuclei. The FHF potential,
assumed to be central, can then directly be used to compute fusion cross-sections [23, 24, 25].

Our new DCFHF method is the static counter-part of the density-constrained time-dependent
Hartree-Fock approach developed to extract the nucleus-nucleus potential of dynamically evolving
systems [26]. In particular, this approach shows that the Pauli exclusion principle splits orbitals
such that some states contribute attractively (bounding) and some repulsively (antibounding) to the
potential [27]. In order to disentangle effects of the Pauli exclusion principle from the dynamics,
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we need to investigate the bare potential without polarisation effects. The dynamics can be included
in a second step via, e.g., coupled-channels [23] or TDHF [20, 28, 29] calculations.

In the present method, it is important that the nuclear densities remain frozen as the densities
of the HF ground-states of the collision partners. Consequently, the DCFHF approach facilitates
the computation of the bare potential by using the self-consistent HF mean-field with exact frozen
densities. The Pauli exclusion principle is included exactly by allowing the single-particle states,
comprising the combined nuclear density, to reorganize to attain their minimum energy configu-
ration and be properly antisymmetrized as the many-body state is a Slater determinant of all the
occupied single-particle wave-functions. The HF minimization of the combined system is thus per-
formed subject to the constraint that the local proton (p) and neutron (n) densities do not change:

δ 〈 H− ∑
q=p,n

∫
dr λq(r) [ρ1q(r)+ρ2q(r−R)] 〉= 0 , (3)

where the λn,p(r) are Lagrange parameters at each point of space constraining the neutron and pro-
ton densities. This equation determines the state vector (Slater determinant) |Φ(R)〉. The DCFHF
potential, assumed to be central, is then defined as

VDCFHF(R) = 〈Φ(R)|H|Φ(R)〉−E[ρ1]−E[ρ2] . (4)

FHF and DCFHF calculations of bare nucleus-nucleus potentials were done in a three-dimensional
Cartesian geometry with no symmetry assumptions using a static version of the code of Ref. [30]
and using the Skyrme SLy4d interaction [31] which has been successful in describing various types
of nuclear reactions [22]. The three-dimensional Poisson equation for the Coulomb potential is
solved by using Fast-Fourier Transform techniques and the Slater approximation is used for the
Coulomb exchange term. The static HF equations and the DCFHF minimizations are implemented
using the damped gradient iteration method. The box size used for all the calculations was chosen
to be 60×30×30 fm3, with a mesh spacing of 1.0 fm in all directions. These values provide very
accurate results due to the employment of sophisticated discretization techniques [32, 33].

The FHF (solid line) and DCFHF (dashed line) potentials are shown in Figs. 1(a-c) for 40Ca+40Ca,
48Ca+48Ca, and 16O+208Pb systems, respectively. Potentials for 16O+16O, 40Ca+48Ca and 48Ca+208Pb
are also shown in Fig. 2, 3 and 4, respectively. We observe that the Pauli exclusion principle
(present only in DCFHF) induces a repulsion at short distance in the three systems. The resulting
effects are negligible outside the barrier and relatively modest near the barrier. However, the im-
pact is more important in the inner barrier region, with the production of a potential pocket at short
distance. In 16O+16O, Pauli repulsion is small and near the barrier. It only becomes significant at
very low-energy. Pauli repulsion could therefore have an impact at astrophysical energies.

We also see that the effect of Pauli repulsion increases for systems with large charge products
Z1Z2. Indeed the DCFHF potential pocket almost disappears in 48Ca+208Pb. However, the two-
body picture for such heavy systems is questionable. Fig. 4 shows indeed an extreme case where
the DCFHF calculation predicts that fusion is impossible at 3% below the barrier. In fact, a smooth
transition toward an adiabatic potential for the compound system is expected [12] which would
allow fusion to occur at lower energies.

Finally, Fig. 3 shows that the Pauli repulsion not only depends on Z1Z2, but also on the num-
ber of neutrons. At touching distance, additional neutrons increase the barrier radius (due to the
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Figure 1: (Color online) (a-c) Nucleus-nucleus potential without (FHF) and with (DCFHF) Pauli exclusion
principle between nucleons of different nuclei. Potentials from a Gram-Schmidt antisymmetrization (dotted-
dashed line) and from DCFHF without rearrangement of the spin-orbit density (thin dashed line) are shown
in panel (a). M3Y (dotted line) and M3Y+rep (dotted-dashed line) phenomenological potentials [34] are
shown in panel (c). (d-f) Experimental [35, 5, 36, 37] and theoretical (coupled-channels calculations with
couplings to low-lying collective 2+ and/or 3− states) fusion cross-sections σ f us. versus centre of mass
energy Ec.m.. (g-i) Logarithmic slopes of σ f us.Ec.m. versus Ec.m.−VB where VB is the barrier energy. In (g-i),
FHF and DCFHF cross-sections are obtained without couplings, the latter being included via a shift in Ec.m.

(see text).

neutron skin) and thus increase its height. For this reason, 48Ca+48Ca has the lowest barrier and
40Ca+40Ca the largest one. However, 48Ca+48Ca also exhibits the strongest Pauli repulsion of the
three systems. This is interpreted as an effect of the larger number of neutrons overlapping at short
distance, thus increasing the Pauli repulsion.

The most important effect of Pauli repulsion is to increase the barrier width. It is then expected
to reduce the sub-barrier tunneling probability as the latter decreases exponentially with the barrier
width.

Coupled-channels calculations of fusion cross-sections were performed with the CCFULL code
[38] using Woods-Saxon fits of the FHF and DCFHF potentials. By default, the incoming wave
boundary condition (IWBC) was used. For shallow pocket potentials, however, the IWBC should
be replaced by an imaginary potential at the potential pocket to avoid numerical instabilities. This
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Figure 2: (Color online) Nucleus-nucleus potential for the 16O+16O system without (FHF) and with
(DCFHF) Pauli exclusion principle between nucleons of different nuclei.
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Figure 3: (Color online) Same as Fig. 2 for the 40Ca+48Ca system. DCFHF potentials for 40Ca+40Ca and
48Ca+48Ca are also shown.

is done for calculations with the 16O+208Pb DCFHF potential using a modified version of CCFULL

with Woods-Saxon parameters {VI = 30 MeV, aI = 1 fm, rI = 0.3 fm} for the imaginary potential.
Couplings to the low-lying collective 2+ (in calcium isotopes) and 3− states are included with
standard values of the coupling constants [35, 39]. In CCFULL, one (two) vibrational mode(s) can
be included in the projectile (target). For the 2+ states, we then use the fact that, for symmetric
systems, the mutual excitation of one-phonon states in both nuclei can be approximated by one
phonon with a coupling constant scaled by

√
2 [40]. Here, the CC calculations are kept simple

and include only the most relevant couplings. Improvements could be obtained, e.g., by including
anharmonicity of the multi-phonon states [41]. The resulting fusion cross-sections are plotted in
Figs. 1(d-f). Calculations with the FHF potential systematically overestimate the data while the
DCFHF potential leads to a much better agreement with experiment at all energies, and ranging
over eight orders of magnitude in cross-sections. This shows the importance of taking into account
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Figure 4: (Color online) Same as Fig. 2 for the 48Ca+208Pb system.

Pauli repulsion in the bare potential for fusion calculations. We emphasise that these calculations
are performed without adjustable parameters.

The behaviour of fusion at deep sub-barrier energies is often studied using the logarithmic
slope d ln(σ f us.Ec.m.)/dEc.m.. Large logarithmic slopes are a signature of a rapid decrease of σ f us.

with decreasing energy. Deep-sub-barrier fusion hindrance is characterised by the failure of the-
oretical models to reproduce large logarithmic slopes observed experimentally at low energy. To
avoid numerical instabilities due to shallow potentials in the calculations of logarithmic slopes,
couplings to internal excitations of the nuclei have been removed in the calculations of barrier
transmission and accounted for via an overall lowering of VB by less than 5% depending on the
structure of the reactants [5]. Indeed, it has been shown that couplings have little effects on the
logarithmic slope at these energies [5]. We see in Fig. 1(g-i) that the inclusion of Pauli repulsion in
DCFHF indeed increases the logarithmic slope at low energy. Although Pauli repulsion is shown
to play a crucial role, it is not yet sufficient to reproduce experimental data at deep sub-barrier
energies. Other contributions are expected to come from dissipative effects [5] and from the tran-
sition between the nucleus-nucleus potential to the one-nucleus adiabatic potential [12]. However,
repulsive effects from the incompressibility of nuclear matter invoked in [8] are not observed in our
microscopic calculations. Both the FHF and DCFHF calculations use the same Skyrme functional
(SLy4d) with a realistic compression modulus of the symmetric nuclear matter K∞ ' 230 MeV.
Although the FHF potential properly takes into account effects due to incompressibility, it is very
close to standard phenomenological potentials. We illustrate this with the example of the M3Y
potential [8] in Fig. 1(c). The addition of a repulsive component at short distance [M3Y+rep
parametrisation shown with a dotted-dashed line Fig. 1(c)], introduced phenomenologically in [8]
to explain experimental fusion data at deep sub-barrier energies, then cannot be justified by an
effect of incompressibility. It is more likely that it simulates other effects such as Pauli repulsion.

C.S. thanks E. Simpson for useful discussions. This work has been supported by the Australian
Research Council Grant No. FT120100760, and by the U.S. Department of Energy under grant No.
DE-SC0013847 with Vanderbilt University.
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