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Muon capture on the2H, 3H and 3He nuclei is investigated using the state-of-the-art nucleon-

nucleon chiral potential with a semi-local regularizationup to the fifth order of chiral expansion

and with the semi-phenomenological AV18 and Urbana IX forces. Despite neglecting, in the case

of the chiral force, the three-nucleon forces and using a simple model of the weak current, the

obtained results show a small cut-off dependence, which is an important and desirable feature

of this recently developed potential. This observation is in agreement with results worked out

from the strong and electromagnetic sectors. Values of the capture rates obtained with the chiral

interaction are in good agreement with ones obtained with the AV18 force and the same model of

weak current.
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1. Introduction

Nearly 60 years ago L.D.Faddeev published his seminal work [1] on quantum three-body
scattering in which he proposed a set of coupled integral equations known now after his name. It
took many years of efforts of nuclear physicist to establish, at least numerically, reliable methods
to solve Faddeev equations. It is impossible to mention here all persons and groups who gave
their contribution to such investigations. Their hard work, deep insight of underlying physics and
experience have built a solid foundation for our current understanding of the three-nucleon systems.
The interested reader can find the extended history of these works in the Introduction of Ref [2].
Nowadays the three-nucleon bound and scattering states can be calculated for various models of
two- and three-body interactions, including advanced semi-phenomenological and chiral forces.
These states have been used to study strong processes like elastic nucleon-deuteron scattering and
the deuteron break-up reactions [3, 4, 5, 2, 6, 7].

The interaction of three-nucleon systems with external probes also raisedinterest in the nuclear
physics community [8]. The electromagnetic current operator was identifiedas a crucial component
of the Faddeev-like equations describing electromagnetic processes involving interaction between
three nucleons and electrons or photons. This, in turn, introduced new questions to theoretical
calculations of the structure and importance of many-body contributions to thenuclear current.
Due to the complex structure of the electromagnetic current, simplifications are usually imposed
on it which weakens the predictive power of such approaches. The modern chiral approach to
low-energy nuclear physics gives hope to overcome this obstacle and it seems that for the first
time we have at our disposal a theoretical model within which it is possible to derive consistent
forces and currents. Weak processes also captured the attention of thefew-body community and
have been studied actively both theoretically and experimentally [9]. Similarly toelectromagnetic
processes, in the case of weak reactions the nuclear current also hasto be included in the theoretical
analysis. Again, due to its complexity only the single nuclear current or few dominant contributions
to many-body currents are usually used, see e.g. [10] for one of suchapproaches. However, recently
substantial progress has been done by H.Krebs and collaborators, who derived the axial nuclear
current emerging from the chiral effective field theory up to the forth order of chiral expansion [11].

Our group, together with collaborators, has been involved in investigationsof three-nucleon
systems for a quite long time. The derived formalism and numerical methods of solving Fad-
deev equations in momentum space allow us to research not only strong processes but also elec-
tromagnetic and weak ones. A review of some of our results can be found in[2, 12, 13]. Re-
cently, we focused again on the weak muon-capture processes, extending our earlier works on
these [14] and other reactions [15]. Currently we not only include the three-nucleon interaction
when studying muon captures but also consider break-up final states for muonic3H and3He atoms
decays [16, 17, 18]. In this contribution we collect, in Section 3, results onmuon capture on the
2H, 3He and3He nuclei, published in our recent works [16, 17, 18]. Beside other nuclear poten-
tials we use the chiral nucleon-nucleon interaction with the semi-local regularization at the fifth
order of chiral expansion (N4LO), which is the most advanced chiral force derived recently by the
Bochum/Bonn group [19, 20]. This new version of the chiral interaction benefits from the im-
proved method of regularization of its long-range part. As was shown in [20, 21, 18], this leads
to an extremely small dependence of nucleon-nucleon phase shifts and observables for the elastic
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nucleon-deuteron scattering, the radiative nucleon-deuteron captureand3He photodisintegration
on the regulator parameter.

2. Formalism

We aim to describe the capture rates forµ−+2 H → n+n+νµ , µ−+3 He→3 H+νµ , µ−+3

He→ n+d+νµ , µ−+3 He→ n+n+p+νµ andµ−+3 H → n+n+n+νµ processes. This can
be achieved by using the Schrödinger (for the muonic2H atom) or the Faddeev (in the case of three
nucleons) equations. Our formalism is described in detail in [13] and [16], so here we only briefly
remind the reader of the main steps.

The nuclear matrix element for the weak current operatorjλ
w between the initial| Ψi〉 and the

final | Ψ f 〉 states

Nλ ≡ 〈Ψ f | jλ
w | Ψi〉 (2.1)

is the basic object in the theoretical analysis for all reactions considered here. Its knowledge,
combined with the well-known leptonic part of the transition amplitude, allows one toobtain any
observables for the investigated processes (see [16] for detailed expressions).

Depending on the reaction, the initial nuclear state is taken as the deuteron orthe three-nucleon
bound state. The deuteron wave function is a solution of the Schrödinger equation and the three-
nucleon bound state is given as| Ψi〉 = (1+P) | ψi 〉, where the Faddeev-component| ψi 〉 fulfills
(under neglecting three-nucleon force) [22] the Faddeev equation

| ψi 〉= G0tP | ψi 〉 . (2.2)

HereG0 is the free three-nucleon propagator,P is the permutation operator andt-operator fulfills
the Lippmann-Schwinger equation

t =V +VG0t (2.3)

with a two-nucleon potentialV.
The neutron-neutron final scattering state for deuteron breakup is given by

〈Ψ f |= 〈~p ~Pf =−~pν m1m2 | (1+ tnnG
nn
0 ) (2.4)

with Gnn
0 andtnn being the two-neutron free propagator and the two-neutront-operator, respectively.

Further,m1 andm2 denote the spin projections of both neutrons and the momenta~p,~Pf and~pν are
the relative Jacobi momentum of outgoing nucleons, their total three-momentumand the muon
neutrino momentum, respectively.

The matrix element for the muon capture on the three-nucleon bound state leading to a muon
neutrino, a nucleon and the deuteron in the final state is expressed as

Nλ
nd(mn,md,m3N ) = 〈φnd~q0mnmd | (1+P) jλ

w | Ψi 〉+ 〈φnd~q0mnmd | P |Uλ 〉 . (2.5)

Here| φnd~q0mnmd〉 is a product state of the deuteron wave function and a momentum eigenstate of
the spectator nucleon with the relative momentum~q0 andmn,md andm3N being the suitable spin
projections. The auxiliary state|Uλ 〉 fulfills the Faddeev-like equation [13]

|Uλ 〉= tG0(1+P) jλ
w | Ψi 〉+ tG0P |Uλ 〉 . (2.6)
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In the case of three free nucleons in the final state the nuclear matrix elementNλ is also given
by the auxiliary state|Uλ 〉:

Nλ = 〈Φ3N | (1+P) jλ
w | Ψi〉+ 〈Φ3N | (1+P) |Uλ 〉 , (2.7)

where|Φ3N〉 is an antisymmetrized state describing the free motion of the three outgoing nucleons.

Finally, in the case of the3He to3H transition

Nλ (m3H ,m3He) ≡ 〈Ψ3H ~Pf =−~pν m3H | jλ
w | Ψ3He~Pi = 0m3He〉 , (2.8)

where initial3He is at rest (~Pi = 0 in the lab. system) and its spin projection ism3He. The final3H
nucleus moves with a momentum~Pf opposite to the neutrino momentum~pν and its spin projection
is m3H .

For the weak currentjλ
w we employ a non-relativistic (NR) single nucleon current operator and

supplement it by the(p/M)2 relativistic corrections (RC), whereM is the nucleon mass. Denoting
by ~p′ and~p the nucleon momentum in the final and initial state, respectively, the weak current
matrix elements are

〈~p′ | j0NR+RC(1) | ~p〉 =

(

gV
1 − (gV

1 −4MgV
2 )

(~p′−~p)2

8M2 +
(

gV
1 −4MgV

2

)

i
(~p′×~p) ·~σ

4M2

+ gA
1
~σ · (~p+~p′ )

2M
+gA

2

(

~p′2−~p2
)

4M2
~σ ·
(

~p′−~p
)

)

τ− (2.9)

and

〈~p′ | ~jNR+RC(1) | ~p〉 =

(

gV
1
~p+ ~p′

2M
−

1
2M

(

gV
1 −2MgV

2

)

i~σ ×
(

~p−~p′
)

+gA
1

(

1−
(~p+~p′ )2

8M2

)

~σ

+
gA

1

4M2

(

(~p·~σ )~p′+
(

~p′ ·~σ
)

~p+ i
(

~p×~p′
))

+gA
2

(

~p−~p′
) ~σ · (~p−~p′ )

2M

)

τ−,

(2.10)

where we use the standard notation for spinσ and isospinτ operators andgV
1 ,g

A
1 ,g

V
2 ,g

A
2 are the

nucleon weak form factors.

A more detailed discussion of the reaction kinematics, our model of weak current and its
comparison with other approaches as well as formulas connecting the nuclear matrix elements
with the capture rates are given in [16].

We solve Eqs. (2.5)- (2.8) using the formalism of partial waves. We employ all partial waves
in the two-body systems up to the two-body total angular momentum j=3 and in the three-body
states up to the three-body total angular momentum J=15

2 , see [2, 13] for the discussion of more
technical details including convergence of our predictions.

The chiral approach gives us a unique opportunity to estimate one of the contributions to
the uncertainty of theoretical predictions. In Ref. [21] the prescription for the estimation of the
truncation errors, i.e. uncertainties arising from neglecting, at a given order of the chiral expansion,
the contributions from higher orders, is given. We apply it also here andestimate the truncation
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errorδ (X)(i) of an observableX at thei-th order of the chiral expansion, withi = 0,2,3, . . .. If Q
denotes the chiral expansion parameter, the expressions for truncationerrors are

δ (X)(0) ≥ max
(

Q2|X(0)| , |X(i≥0)−X( j≥0)|
)

,

δ (X)(2) = max
(

Q3|X(0)| ,Q|∆X(2)| , |X(i≥2)−X( j≥2)|
)

,

δ (X)(i) = max
(

Qi+1|X(0)| ,Qi−1|∆X(2)| ,Qi−2|∆X(3)|
)

for i ≥ 3 . (2.11)

In the above formulasX(i) is a prediction for the observableX at i-th order,∆X(2) ≡ X(2)−X(0)

and ∆X(i) ≡ X(i) −X(i−1) for i ≥ 3. In addition we also require thatδ (X)(2) ≥ Qδ (X)(0) and
δ (X)(i) ≥ Qδ (X)(i−1) for i ≥ 3.

3. Results

In Tabs. 1-4 we present results for the capture rates on2H and3He obtained with the chiral
potential [19, 20] with the semi-local regularization for all orders of chiral expansion up to N4LO
and for different values of the regulatorR. In addition, in Tab. 5 we give the capture rates for the
same processes but obtained with the AV18 nucleon-nucleon force [23]alone or supplemented by
the Urbana IX [24] three-nucleon force. In Tab. 5 we also include results for the muon capture on
3H with three free neutrons and a muon neutrino in the final state.

Comparing numbers from Tab. 5 with the corresponding results from Tabs. 1-4 (i.e. results
with the AV18 potential only with the predictions at N4LO atR= 0.9 fm) we observe good overall
agreement. Of course, due to the different dynamical models, one shouldnot expect exactly the
same numbers and indeed the observed differences are small. Results obtained with the semi-
phenomenological forces can also deliver an intuition about a role playedby the three-nucleon
force and meson exchange currents. For example, effects of the three-nucleon Urbana IX force
are about 2% for theµ− +3 He→3 H+ νµ capture. For the same process the dominant meson
exchange currents changes the capture rate by about 5%.

The capture rates arising from the chiral approach behave in a similar way. The convergence of
predictions at a given regulator value is perfect in all cases. The differences between predictions at
subsequent orders decrease and the changes between predictions at N4LO and N3LO are less then
approximately 1% for all the processes. Of course this result is not a final proof of convergence
of the complete chiral approach comprising also the chiral three-nucleon force (which contribute
from N2LO) and consistent, at given order, one- and many-body axial currents. However, since the
two-body interaction and single nucleon current gives dominant contributions to capture rates our
results give hope for a good convergence of predictions also in completecalculations.

To facilitate study of the cut-off dependence of chiral predictions in Tabs. 1-4 we include also
the spread of the results at a given chiral order due to the differentR values,∆. Starting from the
NLO, for all processes,∆’s are very small compared to the absolute values of the capture rates.
Moreover, removing results withR=0.8 fm andR=1.2 fm, which yield the poorest description of
the nucleon-nucleon phase shifts, leads to a further reduction of∆.

Finally, in Tabs. 1-4 we also show estimations for the truncation errorsδ (Γ), obtained from
Eqs. (2.11) for predictions withR=0.9 fm. It is clear, that the expected contributions from higher or-
ders of chiral expansion decrease when moving from a given order tothe subsequent one. However,
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chiral order R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm δ (Γ) ∆
LO 396.0 397.4 398.4 398.9 399.2 21.02 3.2

NLO 384.2 385.8 387.2 388.6 389.8 4.84 5.6
N2LO 385.0 386.1 387.2 388.3 389.3 1.11 4.3
N3LO 386.8 386.4 385.2 384.3 383.2 0.26 3.6
N4LO 385.5 386.1 386.3 385.6 384.6 0.06 1.7

Table 1: The capture ratesΓ in [s−1] for the µ−+d→ n+n+νµ process obtained with the chiral nucleon-
nucleon interaction at given order and the NR+RC model of thenuclear weak current operator. In the
next-to-last column the truncation errorδ (Γ) at given order of the chiral expansion for the capture rate,
obtained forR=0.9 fm, is given. In the last column the spread of the resultsat a given chiral order due to the
differentRvalues,∆ in [s−1], is shown.

chiral order R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm δ (Γ) ∆
LO 1610 1618 1610 1594 1572 314.0 46

NLO 1330 1357 1381 1405 1427 72.2 97
N2LO 1337 1356 1376 1395 1415 16.6 78
N3LO 1314 1304 1289 1278 1266 3.8 48
N4LO 1296 1307 1308 1299 1285 0.9 23

Table 2: The same as in the Tab. 1 but for theµ−+3 He→3 H+νµ process.

chiral order R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm δ (Γ) ∆
LO 262 282 312 350 392 304.0 130

NLO 536 525 515 504 492 69.9 44
N2LO 547 539 529 518 507 16.1 40
N3LO 584 586 592 596 603 3.7 19
N4LO 590 584 583 587 595 0.9 12

Table 3: The same as in the Tab. 1 but for theµ−+3 He→ d+n+νµ process.

these numbers have to be considered with caution - in some cases the actual difference between pre-
dictions at two subsequent orders exceeds the estimated magnitude of truncation errors. It would
be interesting to check how these numbers change after using a consistent(at each order) weak
current operator.

Summarizing, we investigate the muon capture on the deuteron and the three-nucleon bound
states focusing on applications of the chiral two-body force with the semi-local regularization.
In the first applications of this force to the muon capture processes, presented here, we neglect
the three-body interaction and restrict ourselves to only the single nucleoncurrent. The obtained
results, even under these simplifying assumptions, are very promising. Themagnitudes of the
capture rates are in good agreement with the predictions obtained with the AV18 two-nucleon
force, the convergence of predictions with respect to the orders of chiral expansion is fast and
the dependence of the capture rates on a magnitude of the regulator is extremely small. This
provides a good background for future studies of the muon capture processes with a complete
chiral Hamiltonian.
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chiral order R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm δ (Γ) ∆
LO 95 99 105 113 120 70.0 26

NLO 159 157 154 151 148 16.1 11
N2LO 161 159 157 154 151 3.7 10
N3LO 169 169 171 172 175 0.9 6
N4LO 170 169 169 170 173 0.2 4

Table 4: The same as in the Tab. 1 but for theµ−+3 He→ p+n+n+νµ process.

process dynamical model Γ
µ−+d→ n+n+νµ AV18, with RC 404

AV18, with RC 1295
µ−+3 He→3 H+νµ AV18+ Urbana IX, with RC 1324

AV18+ Urbana IX with MEC [10] 1386

µ−+3 He→ d+n+νµ AV18, with RC 604
AV18+ Urbana IX 544

µ−+3 He→ p+n+n+νµ AV18, with RC 169
AV18+ Urbana IX, with RC 154

AV18 37.5
µ−+3 H → n+n+n+νµ AV18, with RC 36.5

AV18+ Urbana IX, with RC 32.6

Table 5: The capture ratesΓ in [s−1] for a muon capture on2H, 3H and 3He obtained with the AV18
nucleon-nucleon force alone or supplemented with the Urbana IX three-nucleon force.
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