Search for double beta decay of 106Cd with the TGV-2 spectrometer

Nikolay Rukhadze1 on behalf of TGV collaboration
Joint Institute for Nuclear Research
Joliot-Curie, 6, 141980 Dubna, Moscow region, Russia
E-mail: rukhadze@jinr.ru

A new experimental run of searching for double beta decay of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer. The spectrometer consists of 32 planar type HPGe detectors with a total sensitive volume of ~400 cm3. 16 foils of 106Cd with an enrichment of 99.57% and a total mass of ~ 23.2 g were inserted between the entrance windows of face-to-face detectors. The limit on 2νEC/EC decay of 106Cd - $T_{1/2} > 4.7 \times 10^{20}$ y at 90% C.L was obtained from the preliminary calculation of experimental data accumulated for 13632 h of measurement. The limits on EC/EC decay of 106Cd to excited states of 106Pd, and $\beta^+\beta^+\beta^+$, $\beta^+\text{EC}$ decays to the ground and excited states of 106Pd were improved in present investigation.
1. Introduction

Investigation of double-beta decay processes ($\beta\beta$, $\beta'^2\beta$, β'/EC, EC/EC) are of great importance for particle and nuclear physics as a sensitive tool for the study of lepton number conservation and the properties of neutrino [1]. Up to now more attention has been given to $\beta\beta$ decay. As a result, two-neutrino ($2\nu\beta\beta$) decay was detected for 11 nuclei: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe, 150Nd, and 238U [2]. Recently, interest in other double-beta processes has significantly increased, in particular, in EC/EC capture. Experimental studies of $2\nu EC/EC$ capture yielded positive result for 130Ba using a geochemical technique [3]. However, the robustness of this implicit experimental method is debatable, and this result has to be confirmed by direct measurements. 106Cd is one of the most promising candidates for the investigation of two-neutrino double electron capture due to the high decay energy ($Q_{EC/EC} = 2775.39 \pm 0.10$ keV). The $2\nu EC/EC$ decay of 106Cd (Fig.1) with a transition to the ground state of 106Pd ($0^{+}\rightarrow0^{+}$, g.s.) is characterized by emission of two Palladium (Pd) X-rays each with an energy of ~21 keV. Theoretical predictions of half-lives for this process are ranged between 1.0×10^{20} and 5.5×10^{21} y [4].

![Decay scheme of 106Cd.](image)

Neutrinoless double electron capture decay ($0\nu EC/EC$) is strongly suppressed in comparison with other double beta decay modes due to the requirement of the emission of an additional particle(s) (γ_{brems}, 2γ, e+e-, e$_{em}$) in order to satisfy the energy-momentum conservation. Bernabéu, De Rujula, and Jarlskog [5] pointed out to the possibility of a resonant
enhancement of the neutrinoless double electron capture (0νEC/EC) in case of a mass degeneracy between the initial and final atoms. The degeneracy condition is expressed as $Q = \Delta M - B_{2h} - E_\gamma \approx 0$, where ΔM is the difference between the initial and final atomic masses, B_{2h} in the energy of double electron holes in the atomic shell of the daughter atom and E_γ is the excitation energy of the daughter nucleus. The isotope 106Cd is one of a favourable candidate for searching for a resonant neutrino-less double electron capture decay (0νEC/EC) to excited states of 106Pd [5, 6]. The possible 0νEC/EC resonant transitions in 106Cd→106Pd decay are KL, 2741 keV; KK, 2718 keV; KL, 2737 keV. The TGV-2 experiment is focused on the study of the double beta decay of 106Cd for several years [7-9] and TGV collaboration (JINR, Dubna; IEAP CTU, Prague; LSM, Modane) is one of the leaders in investigations of EC/EC process. The best experimental limit on 2νEC/EC decay of 106Cd was obtained using the TGV-2 spectrometer (Telescope Germanium Vertical) [10] and ~13.6 g of 106Cd with enrichment of 75%. The result obtained improved existing experimental limits by more than two orders of magnitude and reached the range of theoretical predictions for this decay [4]. The analysis of KX-KX coincidences obtained in the previous run [8] showed a small increase in the number of measured events in the region of ~21 keV (KXPd), which might be the 2νEC/EC decay of 106Cd. But the statistics was not enough to make any significant claim about the presence of the process searched. A new experimental run [9] was performed at LSM using the TGV-2 spectrometer and highly increased mass of enriched 106Cd (from ~13.6 g of 106Cd with enrichment of 75% in the previous run to ~23.2 g of 106Cd with enrichment of 99.57% in current measurement) to accumulate larger statistics of KX-KX coincidence events in the region of interest.

2. Description of the TGV-2 spectrometer

Experiment TGV-2 of searching for double beta decay of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer [10] and 16 samples of enriched 106Cd. The detector part of the spectrometer is composed of 32 HPGe planar type detectors each with sensitive volume of 20.4 cm$^2 \times 0.6$ cm. The basic detection cell is a sandwich-like pair of face-to-face detectors with thin foils made of a double beta emitter placed between them (Fig.2). The distance between investigated samples and detectors is ≤1.5 mm. The 16 pairs are mounted one over another in a common cryostat tower. The total sensitive volume of TGV-2 detectors is as large as 400 cm3 and the total mass of the detectors is about 3 kg of Germanium. The energy resolution of the detectors ranged from 3.0 to 4.0 keV at the 1332 keV 60Co γ-line. The total efficiency of the TGV-2 spectrometer is 50-70% depending on the energy threshold. The design of the detector part of the TGV-2 spectrometer delivers high detection efficiency for multiple coincidence events resulting in strong suppression of the background. The detector part of the TGV-2 is surrounded by: i) a copper shielding with a thickness of ≥20 cm; ii) a steel airtight box protecting from radon accumulation near the detectors; iii) a lead shielding with a thickness of ≥10 cm; iv) a neutron shielding made of borated polyethylene with a thickness of 16 cm. The spectrometer is located in the deep underground laboratory (4800 m w.e.) which allows us to suppress cosmic rays (reduction factor of ~2×106) and fast neutrons (reduction factor of ~103). Further suppression of background was achieved by using coincidence techniques and filtering the electronic and microphone noise in the low energy region (<50 keV) by digitizing the detector response with different shaping times
Investigated foils used in a new run (the phase III of the experiment TGV-2) were produced from 106Cd with enrichment of 99.57% and had a diameter of 52 mm, a thickness of ~70(10) mg/cm2 and a total mass of ~23.2 g (about 1.3×10^{23} atoms of 106Cd).

3. **Experimental results**

Sixteen foils of enriched 106Cd with a total mass of ~23.2 g, prepared for the TGV-2 spectrometer, were preliminary measured at LSM using the high-efficiency low-background HPGe spectrometer Obelix [11] to obtain their contaminations. In processing of experimental data accumulated in this measurement lasted 395 h the analysis of events corresponding to the possible resonant 0νEC/EC decay of 106Cd was also performed. This process may proceed via KL-capture to the 2741 keV excited state of 106Pd and via KK-capture to 2718 keV excited state of 106Pd. The level of 2741 keV will be then depopulated either by emission of a 2741 keV γ -ray or by a 2229 keV and 512 keV γ -quanta cascade [8]. While the level of 2718 keV will be
depopulated via the emission of 1160-, 1046-, and 512-keV γ-quanta cascade [8]. The limits of \(T_{1/2}(KL, 2741 \text{ keV}) > 0.9 \times 10^{20} \text{ y} \) and \(T_{1/2}(KK, 2718 \text{ keV}) > 1.4 \times 10^{20} \text{ y} \) at 90% C.L. on resonant neutrino-less transitions in double electron capture (0νEC/EC) decay of \(^{106}\text{Cd}\) were obtained in processing of this measurement. A new investigation of double beta decay of \(^{106}\text{Cd}\) (phase III of the experiment TGV-2) was started at the Modane underground laboratory (LSM) at the end of February 2014 using the TGV-2 spectrometer and 16 samples of \(^{106}\text{Cd}\) with enrichment of 99.57% and a total mass of ~23.2 g. The level of background obtained in the new measurement (phase III) was lower in comparison with the previous phase II of experiment due to the reduced level of radioactive contamination of investigated samples (Fig.3).

Fig.3. Comparison of single events obtained in phase II (upper spectrum) and phase III (lower spectrum) of the experiment TGV-2.

Suppression of TGV-2 background by using coincidence techniques is shown on Fig.4. Where the upper spectrum represents the total spectrum of single events from all 32 detectors, the middle spectrum is the double coincidence events collected in neighboring detectors, the lower spectrum is the double coincidence events of neighboring detectors with the energy window of 19-22 keV, set in one of the coincidence detectors. The double coincidences between two characteristic KX- rays of Pd detected in neighboring detectors were analyzed to search for 2νEC/EC decay of \(^{106}\text{Cd}\) to the ground 0\(^+\) state of \(^{106}\text{Pd}\). Two types of analysis [7] were performed to find the possible KXPd-KXPd events - the analysis of two-dimensional matrix of double coincidence events (Fig.6) and the “traditional” analysis of one-dimensional spectrum of double coincidence events with KX(Pd) in one of detectors (Fig.7). From the preliminary calculation of data accumulated in phase III of the TGV-2 experiment during 13632h the limit on two-neutrino double electron capture of \(^{106}\text{Cd}\) to the ground 0\(^+\) state of \(^{106}\text{Pd}\) - \(T_{1/2}(2\nu\text{EC/EC,0}\(^+\) \rightarrow 0\(^+\)) >4.7 \times 10^{20} \text{ y} \) (90% C.L.) was obtained.
Fig. 4. Suppression of TGV-2 background by using coincidence techniques.

Fig. 5. Two-dimensional plot of double coincidence events, obtained in measurement of enriched ^{106}Cd (phase III) during 13632 h with shown regions of interest -KXPd and KXCd.
Investigations of other branches of 106Cd decay (Fig.1) were based on the analysis of KX-γ and γ-γ coincidences. The main results obtained in the preliminary calculation of phase III experimental data for other branches of double beta decay of 106Cd are presented in Table 1.

Table 1. TGV-2 limits on double beta decay of 106Cd.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Final level of 106Pd</th>
<th>$T_{1/2}$, y Phase II [8]</th>
<th>$T_{1/2}$, y Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2νEC/EC</td>
<td>0^+_gs</td>
<td>4.2×10^{20}</td>
<td>4.7×10^{20}</td>
</tr>
<tr>
<td></td>
<td>2$, 511.9$ keV</td>
<td>1.2×10^{20}</td>
<td>1.7×10^{20}</td>
</tr>
<tr>
<td></td>
<td>0^+_1, 1134 keV</td>
<td>1.0×10^{20}</td>
<td>1.5×10^{20}</td>
</tr>
<tr>
<td>0νEC/EC</td>
<td>2717.6 keV</td>
<td>1.6×10^{20}</td>
<td>1.4×10^{20}</td>
</tr>
<tr>
<td>0νEC/EC</td>
<td>4$, 2741$ keV</td>
<td>1.8×10^{20}</td>
<td>0.9×10^{20}</td>
</tr>
<tr>
<td>2$\nu$$\beta^+$/EC</td>
<td>0^+_gs</td>
<td>1.1×10^{20}</td>
<td>3.0×10^{20}</td>
</tr>
<tr>
<td></td>
<td>2$, 511.9$ keV</td>
<td>1.1×10^{20}</td>
<td>3.0×10^{20}</td>
</tr>
<tr>
<td></td>
<td>0^+_1, 1134 keV</td>
<td>1.6×10^{20}</td>
<td>4.5×10^{20}</td>
</tr>
<tr>
<td>2$\nu$$\beta^+$$\beta^-$</td>
<td>0^+_gs</td>
<td>1.4×10^{20}</td>
<td>3.9×10^{20}</td>
</tr>
<tr>
<td></td>
<td>2$, 511.9$ keV</td>
<td>1.7×10^{20}</td>
<td>4.7×10^{20}</td>
</tr>
</tbody>
</table>

Measurement of enriched 106Cd with the TGV-2 spectrometer are planned to continue for three years. The expected sensitivity of the phase III of the TGV-2 experiment for 2νEC/EC decay of 106Cd over this period is about $T_{1/2} \sim 10^{21}$ y. Taking into account theoretical predictions for this process [4] we hope to detect 2νEC/EC capture in 106Cd decay within the current experimental run.
4. Acknowledgments

The present work was performed within the collaboration agreements No.15-93 between IN2P3 (France) and JINR (Dubna, Russia), and JOULE between LSM (France), JINR (Dubna) and CTU (Prague). The work was partly supported by the Grant Agency of the Czech Republic (LG14003, LM2011027) and by the Russian Foundation for Basic Research (project no. 14-02-00568). We are grateful to the LSM laboratory that provided service for work underground and highly valuable technical assistance.

References