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1. Introduction

Lattice QCD has achieved great success in understanding hadronic structure via a first prin-
ciples approach to calculating the properties of QCD, in particular the hadron spectrum [1, 2].
However, when studying baryonic properties the exponential increase of statistical noise with Eu-
clidean time continues to prove a challenge, especially for boosted systems at high momentum
values. The study of hadrons carrying momentum is an important topic in various applications,
including hadronic form factors.

Due to the increasing statistical errors, the use of standard lattice techniques to study hadrons
at high momenta has proven difficult. However, recently there has been significant progress in this
area. The use of a parity-expanded variational analysis [3] eliminates cross-parity contaminations at
finite momenta, enabling clean extraction of excited state energies. At very large values of momenta
extracting even the ground state energy can prove challenging. Here, the use of a novel quark
smearing utilising momentum phases [4] has proven advantageous in maintaining small statistical
errors.

In this study, we apply momentum-mearing to a stochastic source to enhance the signal of the
proton at high momentum. Stochastic source techiques are commonly used for all-to-all propa-
gators [5, 6, 7, 8, 11], and for mesons, through the additional volume averaging provided by the
“one-end trick” [9, 10], have been shown to provide an improved signal when compared with a
standard point-to-all propagator. Here, we use the baryonic equivalent of the one-end trick to intro-
duce a dilute stochastic source constructed with Z3 noise to extract the effective energy of a proton
at rest and at finite momentum. Furthermore, we will emphasize how to choose the dilute source
locations to optimise the correlation function signal.

2. Framework

2.1 Proton correlation function

The standard lattice operator for the proton is

φ (~x, t)≡ ε
abc
(

uaT (~x, t)Cγ5db (~x, t)
)

uc (~x, t), (2.1)

yielding the corresponding two-point correlation function,

G(~x, t,~p,Γ) ≡ Tr∑
~y

Γei~q·(~y−~x) 〈T
(

φ (~y, t), φ̄ (~x,0)
)
〉

= ∑
~y

ei~p·(~y−~x)
Γ

γγ ′ hγ ′γ(Su (~y, t;~x,0), Sd (~y, t;~x,0), Su (~y, t;~x,0)) (2.2)

The quark propagators S f for each flavor u,d combine according to the Wick contractions,

hγγ ′(S1,S2,S3) = ε
abc

ε
e f g
{

Tr
[

Sae
1 γ5C Sb f T

2 Cγ5

]
Scg

3 γγ ′+
[

Sae
1 γ5C Sb f T

2 Cγ5 Scg
3

]
γγ ′

}
, (2.3)

where Su (~y, t;~x,0) = 〈T (u(~y, t), ū(~x,0))〉, Roman indices a− g are for color and Greek indices
γ,γ ′ are for spin. Here we assume iso-spin symmetry Su ≡ Sd for the nucleon. The parity projection
matrix Γ is chosen as ( I + γ4 )/2.
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2.2 Dilute Z3 noise source

Here, the one-end trick for baryons is implemented by introducing a dilute Z3 noise vector,

η (~xi)≡ ei2R(i)π/3, (2.4)

where~xi is the i-th source location, and R(i) is a random number in the set {0,1,2}. The Z3 noise
vector satisfies 〈η(~xi)η(~x j)η(~xk)〉 = δi j δ jk. Hence, we can define a solution vector χ(~y, t) such
that

χ(~y, t) =
N

∑
i=1

S(~y, t;~xi,0)η(~xi) , (2.5)

where the sum enumerates the N different source locations. The source is dilute, so N will be much
less than the lattice volume. The spatial noise vector η (~xi) is replicated for each spin and color
source index such that the quark propagator S (~y, t;~xi,0) is given by

Sab
αβ

(~y, t;~xi,0) = 〈χab
αβ

(~y, t)η
∗(~xi)〉 . (2.6)

2.3 Momentum smearing and phase in the source

We apply iterative momentum smearing [4] to our lattice operators to improve the signal at
high momentum. Furthermore, as the stochastic propagator χ includes various source locations,
it is necessary to include the appropriate the Fourier phase at nonzero momentum at each source
point. It is convenient to introduce one momentum variable for each quark propagator, such that
the new propagator χ(~y, t,~q) can be defined as

χ (~y, t,~q) =
N

∑
i=1

η (~xi)e−i~q·~xiS~q(~y, t;~xi,0) , (2.7)

where S~q is the propagator defined in Ref. [4] with momentum smearing phase ~q applied at the
source and sink. The exponential factor e−i~q·~xi is the Fourier phase appropriate to each of the N
different source locations in the correlation function, and is independent of the smearing algorithm.

2.4 Proton correlation function with momentum-based noise source

The correlation function of the proton is calculated using the stochastic propagator χ(~y, t,~p),
instead of S(~y, t;~x,0). Correspondingly, we only need to keep track of the Fourier phase at the sink,
as the source phase has already been absorbed into the stochastic propagators. The new proton
two-point function is given by

GN( t,~q1 +~q2 +~q3,Γ)

≡ ∑
~y

ei(~q1+~q2+~q3)·~y Γ
γγ ′ hγγ ′(χ (~y, t,~q1),χ (~y, t,~q2),χ (~y, t,~q3)) (2.8)

= ∑
~y

N

∑
i=1

ei(~q1+~q2+~q3)·(~y−~xi) Γ
γγ ′ hγγ ′(S~q1 (~y, t;~xi,0), S~q2 (~y, t;~xi,0), S~q3 (~y, t;~xi,0))

+∑
~y

ei(~q1+~q2+~q3)·~y
N

∑
i, j,k=1

(1−δi j δik )η(~xi)η(~x j)η(~xk)

×ei(~q1·~xi+~q2·~x j+~q3·~xk) Γ
γγ ′ hγγ ′

(
S~q1(~y, t;~xi,0), S~q2(~y, t;~x j,0), S~q3(~y, t;~xk,0)

)
(2.9)
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By using Eq. (2.7), this new correlation function can be divided two parts as shown in Eq. (2.9).
The first part is the summation of the normal correlation function as shown in Eq. (2.2) (using the
smeared propagator). The error of these terms will be smaller than Eq. (2.2) with factor 1/

√
N,

since we include N source locations. We refer to these as the signal terms in the following dis-
cussion. On the other hand, the second part is related to the noise function, and will go to zero
when averaged across a large number of noise sources. These noise terms are a source of statistical
error for the correlation function. Clearly, to get a better signal, we should make the signal terms
stronger and suppress the noise terms, and later we will show how to choose the N source locations
toward this aim.

Furthermore, by judiciously choosing the set of three-momenta used to calculate each quark
propagator, we can maximise the accessible proton momenta values. Here, we calculate quark
propagators with four different values of the three-momenta at the source, q1 = (0,0,0), q2 =

(0,0,1), q3 = (0,1,1), and q4 = (1,1,1), enabling us to generate 20 different total proton momenta
from (0,0,0) to (3,3,3).

3. Results and Discussions

3.1 The error from the noise terms

The primary source of error in the correlation function GN is from the noise terms. Thus, it
is useful to find ways to minimize these terms. In Fig. 1, we show the relative errors of GN for
different choices of source locations. The relative errors of correlation function calculated from a
single source location (open squares) are larger than those from two source locations as (0,0,0)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00

2

4

6

8

1 0

σ G(t) 
/ G

(t) 
  (%

)

t
Figure 1: The relative error in the proton correlation function on a 243× 48 lattice. The open squares use
a single source location~x = (0,0,0), while the circles and triangles are calculated using two source points,
located at ~x = (0,0,0),(2,2,2) and ~x = (0,0,0),(12,12,12), respectively. The open points represent the
signal terms in Eq.(2.9), while the solid points includes both signal and noise terms.
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Figure 2: The error in the effective energy of the proton with total momentum ~pL/2π = (0,0,0) (top) and
(1,1,2) (bottom). N is the number of source locations. Error values are normalized to the error of a point
source. For each value of N, the source locations are chosen to maximize their separation.

and (2,2,2) without noise terms (open circles). However, after including the noise terms (solid
circles), the errors increase quickly and grow larger than those of a point source. This enhancement
of errors is purely due to the contributions from the noise terms. When we change the two source
locations to be further apart at (0,0,0) and (12,12,12) and do the same calculation (triangles), it is
clear that the errors both with and without noise terms become similar, and are much smaller than
in the previous case (circles). From this comparison, we observe that the distance between source
locations will play an important role in minimizing noise terms. This is expected, as the size of the
noise terms will be suppressed by the distance between the source points. If the source locations
are sufficiently spaced the contribution from noise terms becomes negligible.

To keep the source points appropriately spaced, the number of source locations, N, should not
be very large. As shown in Eq. (2.9), the number of noise terms is N3−N, while the number of
signal terms is N. This suggests that in each case there exists an optimal choice for N. In Fig. 2, the
error in the proton effective energy as a function of the number of source points is shown, at zero
momentum (top) and at ~P = (1,1,2) (bottom). Maximally separated source locations are chosen
for each value of N. In the lower plot, at ~P = (1,1,2), we see that as N increases the error drops
rapidly and then increases quickly. At this momentum value, for a lattice volume of 243×48, the
best choice is around N = 4−8.

In summary, the choice of source locations will directly affect the quality of the signal. It
is important that the source points are chosen to be sufficiently spaced in order to suppress the
contribution from the noise terms.

3.2 Results for L = 243×48

In Figs. 3 and 4, results are calculated on a lattice volume of L = 243×48. The black square,
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Figure 3: The relative error of the proton correlation function with N source points within a 243×48 lattice
volume. The black squares, blue triangles and red circles represent choices of N = 1, 4 and 8, respectively.
The errors are relative to the central value of the N = 8 correlation function G8. The factor of 8 on the y-axis
compensates for the use of 8 sources in G8(t). The dashed blue boxes show the selected window for fitting
the effective energy.
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Figure 4: Proton energies for different lattice momenta vs the momentum. The black solid line is calculated
from the continuum dispersion. The set of points include those from Fig. 3.

blue triangle and red circle points are calculated with a single source point, 4 sources, and 8-
sources, respectively. To separate the sources as much as possible, the locations of 4-sources are
chosen as the four vertices of a tetrahedron with edge length 12

√
2, and the locations of the 8-

sources are the eight vertices of box with edge length 12.

In Fig. 3, the relative error of the correlation function with different sources is shown. To
compare the absolute errors in each case, the relative error is constructed using the central value of
the correlation function for 8-sources, since overall that provides the best signal here. We note that,
as shown in Eq. (2.9), the correlation function for N-sources is larger than that of a single source by
a factor N, if the noise terms are negligible, i.e., GN ∼ NG1. Hence, we divide G8, the correlation
function for 8-sources, by a factor of 8, whilst the error σN is divided by a factor of N. In this way,
the value of (8σN)/(NG8) does not only indicate the relative error of the correlation function, but
can also be used to directly compared the absolute value of the error with different source choices.
Firstly, we note that at the small t, the error of with eight source points is much smaller than that of
a single source, by at least a factor of 2.

However, as Euclidean time increases, the relative error of all three cases increase, with the
multi-source error increasing faster. This is understood by noting that the noise terms in the cor-
relation function which originating from the different source locations will grow larger with time
evolution, as the extent of the wave function of the quark expands.

Thus, our method provides a much more precise signal at early times. In Fig. 3, the selected
fitting ranges for each momentum are shown by the blue box. In these fitting ranges, with the
exception of the rest frame, using four and eight source locations gives a better signal than a single
source point for each nontrivial momentum value. Through this comparison, we find that the using
an appropriate dilute Z3 noise source can provide a significant benefit in obtaining the effective
energy of proton in a boosted frame, relative to a standard point source.
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Fig. 4 shows the energy dispersion relation for the proton. In addition to the eight different
proton momenta shown in Fig. 3, we also add another three momenta values, ~P = (0,0,2), (0,1,2),
and (0,0,3). Unfortunately, for the ~P = (0,0,3) case, we are not able to find an appropriate fit
window in the case of a single point source. The black solid line is calculated from the continuum
dispersion relation, and is consistent with the lattice results. We can see that the results using
eight source points (red circles) provide a very clean energy dispersion all the way up to a proton
momentum value of ~P = (3,3,3).

4. Summary

We have introduced a novel stochastic quark source using Z3 noise placed on a dilute grid of
lattice points, incorporating iterative momentum-smearing. The corresponding correlation function
is shown to include two parts, one arising from the signal terms and the other from the noise terms.
The signal terms are the summation of various single point source correlation functions, which can
provide a more accurate signal than a single point source. Through numerical calculation, we find
that there are two ways to reduce the statistical uncertainties that arise from the noise terms. The
first is to maximize the separation of the selected source points. The second is to choose an optimal
number of source points, since the number of noise terms increases much faster with N than the
number of signal terms.

We performed calculations at various momenta on a lattice volume of 243× 48 with sources
at 3 choices of N: 4-points, 8-points and a single point source. Momentum-smearing [4] is applied
at the source and the sink to reduce the statistical error. We find that for boosted systems, using
multiple source locations provides a better signal than that using a single source point. Using a
dilute noise source, we can obtain an acceptable signal for values of the total proton momentum
up to ~P = (3,3,3), in contrast to a standard source which is unable to provide a usable correlation
function at these large momenta. The use of the dilute noise source technique introduced here will
extend our ability to perform lattice calculations in boosted frames with high momentum.
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