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This contribution deals with our recent study of antibaryon interactions with the nuclear medium
within the relativistic mean-field approach using antibaryon coupling constants consistent with
available experimental data. We performed calculations of B̄ (B̄ = p̄, Λ̄, Σ̄, Ξ̄) bound states in se-
lected nuclei. Due to the lack of information on the in-medium antihyperon annihilation near
threshold only the p̄ absorption was considered. It was described by the imaginary part of a phe-
nomenological optical potential fitted to p̄-atom data. The annihilation was treated dynamically,
taking into account explicitly the reduced phase space for annihilation products in the nuclear
medium, as well as the compressed nuclear density due to the antiproton. The energy available
for the annihilation products was evaluated self-consistently, considering additional energy shift
due to particle momenta in the p̄-nucleus system. Corresponding p̄ widths were significantly re-
duced, however, they still remain sizable. Next, the p̄-nucleus interaction was constructed using
the latest version of the Paris N̄N potential. Related scattering amplitudes were used to define
the complex p̄ optical potential in the nuclear medium. The resulting p̄ 1s binding energies are
about 10% smaller and widths about 20% larger than those obtained with the phenomenological
approach.
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1. Introduction

The antibaryon–nucleus interaction is an interesting and topical issue in view of the future
experiments at FAIR facility. Its study could provide us with information about the behavior of
an antibaryon inside the medium as well as nuclear dynamics. Moreover, it could serve as a test
for models of (anti)hadron–hadron interactions. In particular, much attention was devoted to the
p̄-nucleus interaction and possible existence of p̄-nuclear quasi-bound states [1]. It was argued
in Ref. [1] that the phase space for p̄ annihilation products in the medium could be substantially
suppressed so that p̄ could live relatively long inside the nucleus.

In this contribution, we report on our recent self-consistent calculations of B̄ bound states
in various nuclei using G-parity motivated coupling constants. Special attention was devoted to
calculations of p̄-nuclear bound states, which were performed using a phenomenological optical
potential as well as microscopic Paris N̄N potential.

In Section 2, we briefly introduce the model used in our calculations. Our results are presented
in Section 3 and conclusions are drawn in Section 4.

2. Model

The interactions of an antibaryon with A nucleons are studied within the relativistic mean-field
approach (RMF) [2]. In this model, the (anti)baryons interact among each other by the exchange of
the scalar (σ ) and vector (ωµ ,~ρµ ) meson fields, and the massless photon field Aµ . The equations of
motion are derived from the standard Lagrangian density LN extended by the Lagrangian density
LB̄ describing the antibaryon interaction with the nuclear medium using the variational principle
(see Ref. [3] for details). The Dirac equations for nucleons and antibaryon read:

[−i~α~∇+β (m j +S j)+Vj]ψ
α
j = ε

α
j ψ

α
j , j = N, B̄ , (2.1)

where
S j = gσ jσ , Vj = gω jω0 +gρ jρ0τ3 + e j

1+ τ3

2
A0 (2.2)

are the scalar and vector potentials, respectively. Here, α denotes single particle states, m j stands
for (anti)baryon masses and gσ j,gω j,gρ j, and e j are (anti)baryon coupling constants to correspond-
ing fields. The Klein–Gordon equations for the meson fields involve additional source terms due to
the antibaryon:

(−4+mσ2 +g2σ +g3σ
2)σ =−gσNρSN−gσ B̄ρSB̄ ,

(−4+mω2 +dω
2
0 )ω0 = gωNρV N +gωB̄ρV B̄ ,

(−4+mρ2)ρ0 = gρNρIN +gρB̄ρIB̄ ,

−4A0 = eNρQN + eB̄ρQB̄ ,

(2.3)

where mσ ,mω ,mρ are the masses of considered mesons and ρS j,ρV j,ρI j and ρQ j are the scalar,
vector, isovector and charge densities, respectively. The system of coupled Dirac (2.1) and Klein–
Gordon (2.3) equations is solved self-consistently by iterative procedure.

The values of the nucleon–meson coupling constants and meson masses were adopted from
the nonlinear RMF models TM1(2) [4] for heavy (light) nuclei and from the NL-SH model [5].
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Figure 1: The phase space suppression factor fs as a function of the center-of-mass energy
√

s.

The hyperon–meson coupling constants for the ω and ρ fields were derived using SU(6) symmetry
relations. The values of the σ coupling constants were obtained from fits to available experimental
data — Λ hypernuclei [6], Σ atoms [7], and Ξ production in (K+,K−) reaction [8].

The B̄–nucleus interaction is constructed from the B–nucleus interaction with the help of the
G-parity transformation: the potential generated by the exchange of the ω meson changes sign due
to the G-parity and becomes attractive. The G-parity is surely a valid concept for the long and
medium range B̄ potential. It yields a very deep B̄-nucleus potential, e. g., the p̄ potential would be
about 750 MeV deep inside a nucleus. However, the B̄ annihilation, which is a dominant process in
the short range interaction, and various many-body effects could cause significant deviations from
the G-parity values in the nuclear medium. Indeed, the experiments with antiprotonic atoms [9]
and p̄ scattering off nuclei at low energies [10] suggest that the real part of the p̄-nucleus potential
is 100− 300 MeV deep in the nuclear interior. Therefore, we introduce a scaling factor ξ for
the antibaryon–meson coupling constants which are in the following relation to the baryon–meson
couplings:

gσ B̄ = ξ gσN , gωB̄ =−ξ gωN , gρB̄ = ξ gρN . (2.4)

In this work, we consider the value of ξ = 0.2−0.3 which is in accordance with the experimental
data fits. We assume the same scaling for antihyperons, as well, due to the lack of experimental
information on antihyperon interactions.

The realistic description of B̄-nucleus interaction should involve B̄ absorption in the medium.
In our calculations, only the p̄ absorption in a nucleus has been considered since we found no
experimental information on antihyperon annihilation in the medium. The p̄ absorption is de-
scribed by the imaginary part of the optical potential in a ‘tρ’ form adopted from optical model
phenomenology [9]:

2µImVopt(r) =−4π

(
1+

µ

mN

A−1
A

)
Imb0ρ(r) , (2.5)
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Figure 2: Energy dependence of the Paris 09 p̄N S-wave amplitudes: Pauli blocked amplitude for ρ0 =

0.17 fm−3 (solid lines) is compared with free-space amplitude (dotted lines).

where µ is the p̄–nucleus reduced mass. The density ρ(r) is evaluated dynamically within the
RMF model, while the parameter Imb0 = 1.9 fm is determined by fitting the p̄ atom data [9].
The effective scattering length Imb0 describes the p̄ absorption at threshold and, therefore, we
evaluate the suppression factor fs for a given decay channel to account for reduction of the phase
space available for decay products of the p̄ annihilation in the nuclear medium. The absorptive p̄
potential then acquires the form

ImVp̄(r,
√

s,ρ) = ∑
channel

Bc fs(
√

s)ImVopt(r) , (2.6)

where Bc is the branching ratio for a given channel (see Ref. [3] for details). The calculated phase
space suppression factors as a function of

√
s for all channels considered are depicted in Figure 1.

Next, we construct the p̄ optical potential using the S-wave p̄N scattering amplitudes derived
from the latest version of the Paris N̄N potential [11]. The free-space amplitudes are modified
using the multiple scattering approach of Wass et al. [12] to account for Pauli correlations in the
medium. The in-medium isospin 1 and 0 amplitudes are of the form

F1 =
f p̄n(δ

√
s)

1+ 1
4 ξk

√
s

mN
f p̄n(δ

√
s)ρ

, F0 =
[2 f p̄p(δ

√
s)− f p̄n(δ

√
s)]

1+ 1
4 ξk

√
s

mN
[2 f p̄p(δ

√
s)− f p̄n(δ

√
s)]ρ

. (2.7)

Here, f p̄n and f p̄p denote the free-space amplitudes as a function of δ
√

s =
√

s−Eth; ρ is the
nuclear core density distribution and ξk is taken from Ref. [13]. In Figure 2, there are free-space p̄N
amplitudes compared with the in-medium modified amplitudes at ρ0 as a function of energy. Both
amplitudes vary significantly with energy below threshold. The peaks of the in-medium amplitudes
are lower in comparison with the free-space amplitudes and are shifted towards threshold. The S-
wave optical potential is of the following form:

2Ep̄Vopt =−4π

√
s

mN

(
F0

1
2

ρp +F1

(
1
2

ρp +ρn

))
, (2.8)
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where ρp (ρn) is the proton (neutron) density distribution and the factor
√

s/mN transforms the
in-medium amplitudes to the p̄-nucleus frame.

The energy relevant for the p̄ scattering amplitudes and suppression factors in the nuclear
medium is defined by Mandelstam variable

s = (EN +Ep̄)
2− (~pN +~pp̄)

2 , (2.9)

where EN = mN−BNav, Ep̄ = mp̄−B p̄, BNav and B p̄ are the average binding energy per nucleon and
the p̄ binding energy, respectively. In the two-body c.m. frame ~pN +~pp̄ = 0 and Eq. (2.9) reduces
to √

s = mp̄ +mN−Bp̄−BNav (M). (2.10)

However, in the p̄-nucleus frame the momentum dependent term in Eq. (2.9) is no longer negli-
gible [14] and provides additional downward energy shift. Then the Mandelstam variable can be
rewritten as

√
s = Eth

(
1−

2(Bp̄ +BNav)

Eth
+

(Bp̄ +BNav)
2

E2
th

− 1
Eth

Tp̄−
1

Eth
TNav

)1/2

(J), (2.11)

where TNav is the average kinetic energy per nucleon and Tp̄ represents the p̄ kinetic energy.
The kinetic energies were calculated as the expectation values of the kinetic energy operator
Tj =− h̄2

2m(∗)
j

4, where m∗j = m j−S j is the (anti)nucleon reduced mass.

3. Results

First, we performed self-consistent calculations of 1s B̄ bound states in various nuclei using the
RMF model with G-parity motivated coupling constants, introduced in previous section. Then, we
considered the p̄ absorption inside the nucleus. The p̄ absorption was described by the imaginary
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Figure 3: The B–nucleus (left) and B̄–nucleus (right) potentials in 16O, calculated dynamically in the TM2
model for ξ = 0.2.
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Figure 4: The A dependence of B̄ 1s binding energies, calculated dynamically in the TM model for ξ = 0.2.

part of the phenomenological optical potential. Finally, we studied p̄ quasi-bound states within the
latest version of the Paris N̄N potential.

In Figure 3, there is the total potential acting on an extra baryon and extra antibaryon in the 1s
state in 16O, calculated dynamically (i. e., the core polarization effect due to B̄ was considered) in
the TM2 model. All antibaryons feel attractive potential due to the G-parity transformation (note
that even Σ̄0 feels attraction inside the nucleus). The depth of the potential felt by B̄ is deeper than
the one felt by B inside the nucleus and indicates that the antibaryons would be strongly bound
in the medium. Figure 4 presents corresponding 1s binding energies of B̄ bound in nuclei across
the periodic table, calculated dynamically in the TM model and ξ = 0.2. The p̄ is the most bound
antibaryon in all nuclei considered since it feels the deepest potential inside the medium. The
Λ̄, Σ̄0 and Ξ̄0 are bound less due to the weaker couplings to the meson fields. It is to be noted
that the presented binding energies were calculated in two models, the TM2 model for 6Li, 12C
and 16O and the TM1 model for 40Ca, 90Zr and 208Pb. These two models yield different values of
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Figure 5: Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states in selected nuclei,
calculated dynamically using the TM1 model for different

√
s.
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Figure 6: Binding energies (left panel) and widths (right panel) of 1s p̄-nuclear states in selected nuclei, cal-
culated dynamically for

√
s = J using the Paris N̄N S-wave potential (red) and phenomenological approach

within the NL-SH model (black).

nuclear compressibility and different magnitudes of the σ and ω fields and, therefore, the binding
energies do not grow with the increasing mass number A as would be expected (see Ref. [3] for
more details).

Next, we considered the p̄ absorption inside the nucleus by adding the imaginary part of the
phenomenological potential to the real p̄-nucleus potential evaluated within the RMF approach. In
Figure 5, there are binding energies (left panel) and widths (right panel) of the 1s p̄-nuclear states
in various nuclei, calculated dynamically in the TM1 model. The presented results were calculated
for
√

s in the two-body frame (M) and laboratory frame (J). The two versions of
√

s yield similar
p̄ binding energies. The energies in a given nucleus are not much affected by the p̄ absorption
(compare with Figure 4). On the other hand, the p̄ widths are sizable in the two-body c.m. frame
and are significantly reduced after including the momentum dependent term in

√
s. However, they

still remain large.
We performed a comparable study of p̄-nuclear quasi-bound states using the microscopic Paris

N̄N S-wave potential. The resulting 1s p̄ binding energies and corresponding widths are presented
in Figure 6. The p̄ binding energies and widths calculated using the phenomenological approach
within the NL-SH model are shown for comparison. The Paris S-wave potential yield smaller p̄
binding energies than the phenomenological potential in all nuclei considered. The p̄ widths exhibit
the same A dependence, however, they are much larger than those calculated with the phenomeno-
logical potential. It is to be noted that the Paris N̄N potential contains sizable P-wave interaction
which should be included in the calculations. Such calculations have been performed recently and
will be published elsewhere.

4. Conclusions

We performed self-consistent calculations of antibaryon-nucleus bound states in selected nu-
clei. First, the B̄-nucleus potential was constructed within the RMF approach using the G-parity
motivated coupling constants properly scaled to fit available experimental data. The real parts of the
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potentials felt by B̄ inside nuclei are attractive and fairly deep due to the G-parity transformation. In
our calculations, we considered only the p̄ absorption inside the nucleus so far. The absorption was
described by the imaginary part of the phenomenological potential. The phase space suppression
factors entering the phenomenological potential were evaluated self-consistently using

√
s for the

two-body frame and p̄-nucleus frame. It was found that the energy shift due to N and p̄ momenta
significantly reduces the p̄ widths. However, they still remain sizable for potentials consistent with
p̄-atom data. Next, we performed calculations of p̄-nuclear quasi-bound states using the optical
potential constructed from the Paris N̄N S-wave scattering amplitudes. The free-space p̄N am-
plitudes were modified in order to account for Pauli correlations in medium. The resulting 1s p̄
binding energies are about 10% smaller and widths about 20% larger than those calculated with the
phenomenological approach.
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