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1. Introduction

The ηN attraction near threshold seems to be strong enough to allow binding of the η meson
in nuclei. However, strong energy dependence and in-medium modifications of the ηN scatter-
ing amplitudes, derived within coupled-channel models that capture the nature of the N∗(1535)
resonance, have to be carefully taken into account in any reliable calculation.

The present contribution reports on systematic treatment of the energy and density depen-
dences of the underlying ηN scattering amplitudes in dynamical self-consistent calculations of η

quasi-bound states in nuclei (more details can be found in Refs. [1, 2, 3]).

In Section 2, we discuss model dependence and in-medium modifications of the ηN scatter-
ing amplitudes, introduce methods for calculating η-nuclear states in few- as well as many-body
systems, and demonstrate how to incorporate the strong energy dependence of the scattering am-
plitudes near threshold in calculations of η-nuclei. In Section 3, we present selected results of our
study of η-nuclear quasi-bound states and a brief summary is given in Section 4.

2. Methodology

The ηN interaction has been described within coupled-channel models that fit or, in addition,
generate dynamically the N∗(1535) resonance lying ≈ 50 MeV above the ηN threshold. How-
ever, the derived ηN scattering amplitudes exhibit appreciable model dependence, particularly at
threshold and further down to subthreshold region which is relevant to calculations of η-nuclear
quasi-bound states. This is illustrated in Fig. 1, where we present comparison of ηN scattering
amplitudes for three selected meson-baryon interaction models GW [4], CS [5], and GR [6].
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Figure 1: Energy dependence of the real (left panel) and imaginary (right panel) parts of the free ηN
scattering amplitude in interaction models GW [4] (dashed), CS [5] (solid), and GR [6] (dotted). The vertical
line denotes the ηN threshold.
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The strong energy dependence of the ηN scattering amplitudes has to be treated self-consistently.
The argument

√
s in the scattering amplitudes is given by

√
s =

√
(
√

sth−Bη −BN)2− (~pη +~pN)2 ≤
√

sth, (2.1)

where
√

sth ≡ mη +mN , and Bη and BN are η and nucleon binding energies, respectively. In the
nuclear medium the momentum dependent term causes additional downward energy shift, since
(~pη +~pN)

2 6= 0. The energy shift can be approximated as [2]

δ
√

s =
√

s−
√

sth ≈−BN
ρ

ρ̄
−ξNBη

ρ

ρ0
−ξNTN(

ρ

ρ0
)2/3−ξη

√
s

ωηEN
2πRe FηN(

√
s,ρ)ρ , (2.2)

where ξN(η) = mN(η)/(mN +mη), ρ̄ is the average nuclear density, TN = 23.0 MeV at ρ0, and
BN ≈ 8.5 MeV is the average nucleon binding energy. It is to be noted that for attractive scattering
amplitudes, all terms in Eq. 2.2 are negative definite, providing substantial downward energy shift.

A variant of Eq. 2.2 was used in η-nuclear three- and four-body calculations [3]:

δ
√

s =−B
A
− A−1

A
Bη −ξN

A−1
A
〈TNN〉−ξη

(
A−1

A

)2

〈Tη〉 , (2.3)

where B is the total binding energy of the system, Tη is the kaon kinetic energy operator in the total
cm frame and TNN is the pairwise NN kinetic energy operator in the NN pair cm system (see [3]
for details).

Few-body ηNN and ηNNN systems were calculated using variational method within a hy-
perspherical basis. For the NN interaction, the Minnesota central potential [7] and the Argonne
AV4’ potential [8] were used. The ηN interaction was described by energy dependent local ηN
potentials that reproduce the ηN scattering amplitudes below threshold in CS and GW interaction
models [3]. The conversion widths were evaluated through the expression

Γ/2≈ 〈Ψg.s.|− ImVηN |Ψg.s.〉,

where VηN sums over all pairwise ηN interactions.

The interaction of the η meson with a nuclear many-body system was described by the Klein–
Gordon (KG) equation of the form

[∇2 + ω̃
2
η −m2

η −Πη(ωη ,ρ) ]ψ = 0 , (2.4)

where ω̃η = ωη − iΓη/2 is complex energy of η , ωη = mη −Bη , and Γη is the width of the η-
nuclear bound state. The self-energy operator Πη(

√
s,ρ) ≡ 2ωηVη = −(

√
s/EN)4πFηN(

√
s,ρ)ρ

was constructed self-consistently using a relevant in-medium ηN scattering amplitude FηN(
√

s)
and RMF density of the core nucleus.

Several in-medium ηN amplitudes FηN(
√

s,ρ), such as the GW amplitude, which were used
in our many-body self-consistent calculations were obtained from the free-space amplitudes by
applying a multiple scattering approach [9] (see Ref. [2] for details). In the chirally inspired
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Figure 2: Real (left) and imaginary (right) parts of the ηN scattering amplitude in CS model [5]. Dotted
line: free space amplitude; dot-dashed: Pauli-blocked in-medium amplitude for ρ0 = 0.17 fm−3; solid:
in-medium amplitude including hadron self-energies.

meson-baryon interaction models CS and GR, the Pauli principle restricts integration domain in the
in-medium Green’s function which enters the underlying Lippmann-Schwinger (Bethe-Salpeter)
equations [2] (denoted ’Pauli’). Moreover, hadron self-energy insertions reflecting in-medium
modifications could be included in the in-medium Green’s function, as well (denoted ’Pauli+SE’).

In Fig. 2, we demonstrate the nuclear medium effect on the energy dependence of the ηN CS
scattering amplitude. The peak structure observed for ImFηN is related to the N∗(1535) resonance,
generated dynamically in this model. In-medium Pauli blocking (dot-dashed line) shifts the peak
to higher energies, while implementation of hadron self-energies (solid line) spreads the resonance
structure over a broad energy region and practically dissolves it in the nuclear medium. The in-
medium amplitudes decrease rapidly in going to the subthreshold energies relevant for η-nuclear
quasi-bound states calculations and become weaker than the respective free-space amplitude. For
instance, the relatively large value of the real part of the free-space amplitude at threshold is al-
most halved at nuclear matter density when hadron self-energies are included (Pauli+SE option).
Taking into account in-medium hadron self-energies results in 2–3 MeV lower binding energies of
calculated η-nuclear states than in the case of pure Pauli blocking (Pauli).

It is to be stressed that ReFηN(
√

s) and Bη appear as arguments in the expression for δ
√

s
(Eq. 2.2), which in turn serves as an argument for FηN and thus for the self-energy Πη . There-
fore, a self-consistency scheme in terms of both Πη and Bη is required in calculations. Another
self-consistent scheme is required when hadron self-energies are taken into account, because the
η self-energy Πη appears in the in-medium Green’s function which enters Lippmann-Schwinger
equations used in the evaluation of Πη .

3. Results

Our few-body calculations within the considered coupled-channel models CS and GW found
no bound state solution for the ηNN three-body system. For ηNNN system, a weakly bound state
was found for one particular variant of the ηN potential that reproduced the GW scattering am-
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NN int. E(NNN) δ
√

ssc Esc
gs Esc

η Γsc
gs

MN -8.38 -13.52 -9.33 0.95 3.3
AV4’ -8.99 -15.83 -9.03 0.04 2.4

Table 1: Results of ηNNN bound state calculations within the GW model. Energies and widths are in MeV.

plitudes. (see Ref. [3] for details). The results of calculations for both MN and AV4’ models are
shown in Table 1. The 3N binding energies E(NNN) and self-consistent values of δ

√
s are listed

in the second and third column, respectively. The self-consistently evaluated energy shift δ
√

s to-
gether with the energy dependence of the ηN potential resulted in considerably reduced values of
less than 1 MeV for the η separation energy Esc

η . The η separation energies evaluated at threshold
are between 2−3 MeV. The corresponding widths shown in the last column are relatively small. 1

It is to be noted that no ηNNN bound states were found using more realistic NN interaction models.

In Fig. 3, we present the downward energy shift δ
√

s = E−Eth as a function of the relative
nuclear density ρ/ρ0 in Ca, evaluated self-consistently according to Eq. (2.2) for the CS and GW
models (Pauli option). The energy shift at the central density ranges within 55± 10 MeV and
is about twice larger than δ

√
s considered in previous calculations. The shift for the GW model

exceeds that for the CS model due to stronger ReFηN(
√

s).
It is instructive to compare our self-consistency scheme of calculating η-nuclear states using

δ
√

s of Eq. (2.2) with a δ
√

s = −Bη self-consistency requirement applied in Ref. [6]. Figure 4
shows such comparison for the in-medium GR amplitude (Pauli+SE): our self-consistency scheme
(marked δ

√
s) reduces considerably the GR binding energies and widths with respect to the original
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Figure 3: Subthreshold ηN energies probed by the η nuclear potential as a function of the relative nuclear
RMF density in Ca. Each of the two curves was calculated self-consistently for a particular ηN subthreshold
amplitude model.

1We found an error in normalization which made the originally calculated widths presented in Table 2 of Ref. [3]
much larger.
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Figure 4: Binding energies (left) and widths (right) of the 1s η-nuclear states in selected nuclei calculated
using the GR ηN scattering amplitude [6] with different procedures for subthreshold energy shift δ

√
s.

calculations of Ref. [6] that used δ
√

s = −Bη (marked −Bη ). However, even the considerably
reduced GR widths are still too large, which suggests that it would be extremely difficult to resolve
η-nuclear states in such a case.

The model dependence of the ηN scattering amplitudes shown in Fig. 1 manifests itself in the
calculations of η-nuclear states. Fig. 5 presents binding energies Bη and widths Γη calculated for
the 1s η-nuclear states in selected nuclei using the ηN CS and GW amplitudes (the results for the
GR model are shown in Fig. 4).

The left panel of Fig. 5 demonstrates that for both ηN amplitude models the binding energy
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Figure 5: Binding energies (left) and widths (right) of 1s η-nuclear states in selected nuclei calculated
self-consistently using the CS and GW ηN scattering amplitudes.
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Figure 6: Spectra of η-nuclear bound states across the periodic table, calculated self-consistently using the
GW ηN scattering amplitudes.

increases with A and tends to saturate for large values of A. The hierarchy of the binding energies
Bη calculated within considered ηN amplitude models reflects the strength of ReFηN in the sub-
threshold region (see Fig. 1). Among the models presented here, the GR model yields the least
binding of the η meson in considered nuclei. On the other hand, ReFηN(

√
s) of the CS model

is strong enough to bind η in 12C, and the GW model yields η quasi-bound states even in much
lighter nuclei – it predicts the 1s η-nuclear bound state in the ηNNN system, as shown in Table 1.

The calculated widths Γη are presented in the right panel of Fig. 5. The CS and GW models
yield remarkably small uniform widths of order 2 and 4 MeV, respectively. However, the GR
model predicts much larger widths which increase with A, as shown in Fig. 5. This reflects partly
the energy dependence of ImFηN(

√
s) in the subthreshold region and partly the differences in the

downward energy shifts. For instance, large δ
√

s in the GW model (57 MeV at ρ0 in Ca) causes a
particularly large reduction in the strength of ImFηN(

√
s).

Finally, in Fig. 6 we present η-nuclear single-particle spectra across the periodic table, calcu-
lated self-consistently using the GW model. These dynamical calculations include Pauli blocking
evaluated in the multiple scattering approach [9].

The widths calculated here do not include contributions from two-nucleon processes which are
estimated to add a few MeV. We may therefore conclude that η-nuclear states could in principle
be observed if the CS and GW models turn out to be realistic ones. Other models considered by us
(GR [6], M1 and M2 [10], and KSW [11]) give either too large widths or are too weak to generate
η-nuclear bound states in lighter nuclei.

4. Conclusions

In this contribution, we reported on our recent self-consistent calculations of η- nuclear quasi-
bound states using ηN scattering amplitudes constructed within meson-baryon coupled-channel
models. We focused on the role played by the underlying meson-baryon subthreshold dynamics.
The subthreshold ηN amplitudes relevant for calculations of η nuclear bound states are substan-

6



P
o
S
(
I
N
P
C
2
0
1
6
)
2
8
1

Interactions of the η meson in the nuclear medium and eta-nuclear bound states Jiří Mareš

tially weaker than these amplitudes at threshold. The relatively large downward energy shift in our
self-consistent approach leads to bound state energies and widths which are considerably smaller
than those evaluated in other comparable approaches. The small widths calculated in the CS and
GW models might encourage further experimental searches for η nuclear bound states. However,
calculated widths (as well as binding energies) of η-nuclear quasi-bound states are strongly model
dependent – other models predict widths substantially larger. To date, the only claim of observing
an η nuclear bound state is in the reaction p+27 Al→3 He+25

η Mg→3 He+ p+π−+X reported
by the COSY-GEM collaboration [12].
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