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Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT)
is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD
simulations. We have studied the low-lying baryons N∗(1535), N∗(1440), and Λ(1405). In the
initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by
experiment and the finite-volume eigenstate energies are a prediction of the model. The agree-
ment between HEFT predictions and lattice QCD results obtained at finite volume is excellent.
These lattice results also admit a more conventional analysis where the low-energy coefficients
are constrained by lattice QCD results, enabling a determination of resonance properties from
lattice QCD itself. The role and importance of various components of the Hamiltonian model are
examined in the finite volume. The analysis of the lattice QCD data can help us to undertand the
structure of these states better.
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1. Introduction

The spectra and structures of hadrons are very important to the understanding of the strong
interaction. To study them, many theories and models have been developed [1–7]. Much progress
has been made, but there are still significant problems that remain unsolved.

Naive quark models predict that the mass of N∗(1535) should be smaller than that of N∗(1440)
based on the assumption that these two nucleon excitations are made of three valence quarks.
However, the mass of N∗(1535) is larger. This contradiction indicates that the πN and other two-
particle states with a dominant five-quark component can play an important role in forming these
excitations. Here, we carefully examine the effect of these two-particle states with Hamiltonian
effective field theory (HEFT).

Lattice QCD is a first principles approach that yields non-perturbative calculations for the
energy spectra and structures of hadronic states [8–10]. Like experimental scattering data, lattice
QCD calculations can also provide key information on the properties of hadrons. HEFT can analyze
both the lattice QCD data and experimental data at the same time to obtain valuable insight. It has
been widely used in hadronic physics, with great success [11–16].

In this talk, we use HEFT to study N∗(1535), N∗(1440), and Λ(1405). The formalism is
reviewed in Sec. 2, and the results and discussions are listed in Secs. 3, 4, and 5, respectively. We
summarize in Sec. 6.

2. Framework

2.1 Hamiltonian

To study a baryon |B⟩ with HEFT, one needs to know the interactions amongst the related
particles. We use the following Hamiltonian to describe the interactions,

HB = HB
0 +HB

int. (2.1)

In the center-of-mass frame, the kinetic terms HB
0 can be written

HB
0 = ∑

B0

|B0⟩mB
0 ⟨B0|+∑

α

∫
d3⃗k |α (⃗k)⟩ [ωαM(k)+ωαB(k) ] ⟨α (⃗k)| , (2.2)

where |B0⟩ is a bare baryon and |α (⃗k)⟩ are the two-particle states with the same quantum numbers
as the baryon |B⟩. In the case of the N∗(1535), the two-particle states |α⟩ can be |πN⟩, |πη⟩, and
so on [14]. For the N∗(1440) and Λ(1405), refer to Refs. [15, 16] for details. mB

0 is the bare mass,
while ωαM(k) and ωαB(k) are the kinetic energies of the meson and baryon in the state |α (⃗k)⟩,
ωX(k) =

√
m2

X + k2.

The interaction Hamiltonian HB
int can be divided into two parts

HB
int = gB + vB. (2.3)

gB describes the interaction between the bare baryon and the two-particle states

gB = ∑
α,B0

∫
d3⃗k

{
|α (⃗k)⟩GB†

α,B0
(k)⟨B0|+ |B0⟩GB

α,B0
(k)⟨α (⃗k)|

}
, (2.4)
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and vB describes the direct two-to-two particle interactions

vB = ∑
α,β

∫
d3⃗k d3⃗k′ |α (⃗k)⟩V B

α,β (k,k
′)⟨β (⃗k′)| . (2.5)

The detailed forms of GB
α,B0

(k) and V B
α,β (k,k

′) can be found in Refs. [14–16].

2.2 T -matrix at infinite volume

We can obtain the T -matrix by solving a three-dimensional reduction of the Bethe-Salpeter
equation in the infinite volume,

T B
α,β (k,k

′;E) = Ṽ B
α,β (k,k

′;E)+∑
γ

∫
q2 dqṼ B

α,γ(k,q;E)
1

E −ωγ(q)+ iε
T B

γ ,β (q,k
′;E), (2.6)

where ωγ(q) is the energy of the two-particle state |γ (⃗k)⟩, and the coupled-channel potential can be
obtained from the interaction Hamiltonian

Ṽ B
α,β (k,k

′;E) = GB†
α ,B0

(k)
1

E −mB
0 + iε

GB
β ,B0

(k′)+V B
α,β (k,k

′). (2.7)

Using the T -matrix one can easily extract the phaseshifts, inelasticities, cross sections, and so on.

2.3 Finite-volume matrix Hamiltonian model

In the finite volume particles can only carry a discretized momenta, kn = 2π
√

n/L, where
n = n2

x + n2
y + n2

z is an integer representing the momentum magnitude and L is the length of the
box. We first need to discretize the Hamiltonian in the finite volume. Taking the N∗(1535) as an
example, the non-interacting Hamiltonian is

H B
0 = diag

{
mB

0 , ωπN(k0), ωηN(k0), ωπN(k1), ωηN(k1), . . .
}
. (2.8)

The associated interaction Hamiltonian is

H B
I =



0 G B
πN,B0

(k0) G B
ηN,B0

(k0) G B
πN,B0

(k1) G B
ηN,B0

(k1) . . .

G B
πN,B0

(k0) V B
πN,πN(k0,k0) V B

πN,ηN(k0,k0) V B
πN,πN(k0,k1) V B

πN,ηN(k0,k1) . . .

G B
ηN,B0

(k0) V B
ηN,πN(k0,k0) V B

ηN,ηN(k0,k0) V B
ηN,πN(k0,k1) V B

ηN,ηN(k0,k1) . . .

G B
πN,B0

(k1) V B
πN,πN(k1,k0) V B

πN,ηN(k1,k0) V B
πN,πN(k1,k1) V B

πN,ηN(k1,k1) . . .

G B
ηN,B0

(k1) V B
ηN,πN(k1,k0) V B

ηN,ηN(k1,k0) V B
ηN,πN(k1,k1) V B

ηN,ηN(k1,k1) . . .
...

...
...

...
...

. . .


, (2.9)

where

G B
α,B0

(kn) =

√
C3(n)

4π

(
2π
L

)3/2

GB
α ,B0

(kn), and V B
α,β (kn,km) =

√
C3(n)C3(m)

4π

(
2π
L

)3

V B
α,β (kn,km).

C3(n) represents the degeneracy factor for summing the squares of three integers to equal n.
As the pion mass varies, the masses of other hadrons will also change. For the mass of the

bare baryon, we use
mB

0 (m
2
π) = mB

0 |phys. + αB
0 (m2

π −m2
π |phys.). (2.10)

The eigenvalues of the discretized Hamiltonian provide the spectrum in the finite volume, and they
can be used to analyze the lattice QCD data.
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3. Numerical results and discussion for N∗(1535)

HEFT can be used to connect the experimental data and the lattice QCD results. We fit the
parameters in the Hamiltonian to the phaseshifts and inelasticities of πN scattering in Sec. 3.1. In
Sec. 3.2, we give the predictions for the finite-volume spectrum from the fit parameters and make
a comparison with lattice QCD results. In Sec. 3.3, we extract the pole for N∗(1535) at infinite
volume from the data of lattice QCD with HEFT.

3.1 Phaseshifts and inelasticities

Here we consider the interactions between the bare N∗(1535), πN, and ηN states. The πN-πN
interaction is very important to the phaseshifts at low energies. We show our fits to the phaseshifts
and inelasticities in Fig. 1. The model describes the experimental data well. Based on the fit
parameters, we find a pole for the N∗(1535) at 1531±29− i88±2 MeV.
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Figure 1: Color online: Phaseshifts (left) and inelasticities (right) for πN scattering with I(JP) =

1/2(1/2−) and S = 0.

3.2 Finite-volume results

With the parameters fit by the experimental data, we can study the effect of the interactions on
the finite-volume spectrum. We list the energy levels without (left) and with (right) interactions in
a box with length of about 3 fm in Fig. 2. The lattice QCD data are also shown. We note that the
interactions among the related states are critical to the consistency between our model prediction
and the lattice QCD data.

Usually lattice QCD groups use local three-quark interpolators to extract the signals, and thus
the eigenstates with a significant bare baryon component should be easier to observe on the lattice,
since the coupling to dominant πN or πη multi-particle states are volume suppressed. We have
colored the most probable eigenstates to be observed in the right graph of Fig. 2. One can see the
lattice QCD data does preference the colored lines.

We can also analyze the structure of the eigenstates in the finite volume. We list the compo-
nents for the first four eigenstates with HEFT in Fig. 3. From the top-left subfigure in Fig. 3,
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Figure 2: Color online: The non-interacting energies of the low-lying two-particle meson-baryon channels
(left) and the energy spectrum of HEFT (right) in the finite volume with L ≈ 3 fm for I(JP) = 1/2(1/2−) and
S = 0. The data with filled symbols are from the CSSM group, and those with hollow symbols are from the
Cyprus group. The different line types and colors used in illustrating the energy levels indicate the strength
of the bare basis state in the Hamiltonian-model eigenvector describing the composition of the state. The
thick-solid (red), dashed (blue) and dotted (green) lines correspond to the states having the first, second, and
third largest bare-state contributions, and therefore the most likely states to be observed with three-quark
interpolating fields.
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Figure 3: Color online: The pion-mass evolution of the Hamiltonian eigenvector components for I(JP) =
1
2 (

1
2
−
) and S = 0. The top-left, top-right, bottom-left, and bottom-right graphs represent the 1st, 2nd, 3rd,

and 4th eigenstates, respectively.
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we notice the first eigenstate is mainly πN scattering states at small pion masses, while it tends to
be dominated by the bare state at large pion masses. The second eigenstate is a mix of the bare
baryon and πN scattering states, while the third eigenstate is dominated by the ηN states. The
fourth eigenstate at small pion mass is a nontrivial mix of the bare state, πN, and ηN states.

3.3 Information extracted by the lattice data

In the previous subsections, we obtain the bare mass mB
0 by fitting the scattering data at infinite

volume, and then use mB
0 to see what happens in the finite volume. We do the reverse in this

subsection, adjusting mB
0 in order to fit the lattice QCD data. With this method, we obtain a pole at

1563+52
−80 − i89.2+0.2

−4.2 MeV for the N∗(1535) state in the infinite volume.

4. Numerical results and discussion for N∗(1440)

The structure of N∗(1440) is still under debate. Some models include a three-quark core, but
the experimental data can also be explained under the assumption that this resonance is dynamically
generated by the interplay of πN, π∆, and other two-particle states.

We have considered three scenarios for the structure of the N∗(1440). The first assumes that
the N∗(1440) contains a three-quark core, while the second scenario postulates that this resonance
is purely dynamically generated by two-particle states. The third scenario is based on the second
one, but also including corrections from a bare nucleon component. The fit for the phaseshifts and
inelasticities for these three scenarios is shown in Fig. 4, and we can see all these three scenarios
can explain the experimental data.
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Figure 4: Color online: Phaseshifts (left) and inelasticities (right) for πN scattering with I(JP) = 1
2 (

1
2
+
)

and S = 0. The dot-dashed, dotted and dashed lines represent our best fits for scenario I with the bare
N∗(1440) (Roper), scenario II without a bare baryon, and scenario III with the bare nucleon, respectively.

The three scenarios show different behaviors at finite volume. We show the energy levels for
the first and third scenarios in Fig. 5. The energy levels for the second scenario are very similar
to those for the third, and thus we omit them. From the left graph in Fig. 5, we see that the
second eigenstate contains about 20% bare baryon but the lattice simulations do not observe it.
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Figure 5: Color online: The pion mass dependence of the L ≈ 3 fm finite-volume energy eigenstates for
I(JP) = 1

2 (
1
2
+
) and S = 0. The left one is for the scenario with a bare N∗(1440) and the right one is for that

with a bare nucleon. See Fig. 2 for the instructions of line types and colors.

This contradiction suggests that the N∗(1440) may contain little or no three-quark component.
In the right graph, the lattice QCD data are consistent with the colored lines which represent the
most probable states predicted by HEFT. Additionally, we note that there are nontrivial mixings of
two-particle states in the eigenstates that overlap with the lattice QCD data.

5. Numerical results and discussion for Λ(1405)

We have studied the cross sections of K−p and found two poles for Λ(1405) at 1430− i22
MeV and 1338− i89 MeV. The experimental data can be explained well both with and without a
bare baryon. However, the bare baryon component is important for the lattice QCD data at large
pion masses. The spectra at finite volume without (left) and with (right) a bare baryon is shown in
Fig. 6. The lattice QCD data at large pion masses is not consistent with the scenario where no bare
baryon is considered. There is very little bare baryon in the Λ(1405) at small pion masses, but the
bare baryon plays an important role at large pion masses.

6. Summary

We have studied the N∗(1535), N∗(1440), and Λ(1405) with HEFT, analysing both the ex-
perimental data and lattice QCD data. The N∗(1535) contains a strong three-quark core while the
other two particles do not at the physical pion mass.
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Figure 6: Color online: The pion-mass dependence of the finite-volume energy eigenstates for the scenarios
without (left) and with (right) a bare-baryon basis state for I(JP) = 1

2 (
1
2
−
) and S = −1. The broken lines

represent the non-interacting meson-baryon energies and the solid lines represent the spectrum derived from
the matrix Hamiltonian model. The lattice QCD results are from the CSSM [8, 13].
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