Two-body Wave Functions, Compositeness, And The Internal Structure Of Dynamically Generated Resonances
T. Sekihara*, T. Hyodo, D. Jido, J. Yamagata-sekihara and S. Yasui
Pre-published on:
May 04, 2017
Published on:
May 09, 2017
Abstract
Recently, the compositeness, defined as the norm of a two-body wave function for bound and resonance states, has been investigated to discuss the internal structure of hadrons in terms of hadronic molecular components. From the studies of the compositeness, it has been clarified that the two-body wave function of a bound state can be extracted from the residue of the scattering amplitude at the bound state pole. Of special interest is that the two-body wave function from the scattering amplitude is automatically normalized. In particular, while the compositeness is unity for energy-independent interactions, it deviates from unity for energy-dependent interactions, which can be interpreted as a missing-channel contribution. In this manuscript, we show the formulation of the two-body wave function from the scattering amplitude, evaluate the compositeness for several dynamically generated resonances such as $f_{0} (980)$, $\Lambda (1405)$, and $\Xi (1690)$, and investigate their internal structure in terms of the hadronic molecular components.
DOI: https://doi.org/10.22323/1.281.0289
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.