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We investigate the s− s̄ asymmetry in the proton in chiral effective theory. Unlike previous meson
cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate
states alone, this work includes off-shell terms and contact interactions, which impact the shape of
the s− s̄ difference. We use the hyperon production data and the latest results from global PDF fits
to constrain the parameters within Pauli-Villars regularization procedure, which preserves chiral
symmetry and Lorentz invariance. We also extract the correction to the NuTeV anomaly from
strange asymmetry effect.
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1. Introduction

The nature of the quark-antiquark sea continues to challenge our understanding of the non-
perturbative structure of the nucleon. In addition to the light quark sea, which has been shown to
display nontrivial structure [1, 2, 3], the heavier quarks such as the strange or even the charm quark
could contribute to the internal nucleon dynamics. The role played by strange quarks in the proton
spin [4] and in electroweak form factors [5] has been explored extensively in the literature. Re-
garding to the strange quark distribution functions, most parametrizations from global fit to Deep
Inelastic Scattering (DIS) data assume s(x) = s̄(x).

There are two mechanism that can generate asymmetric strange quark distributions in the
proton. The perturbative contribution arises from gluon radiation at three-loop level [6]. Nonper-
turbatively, the asymmetric dissociation of the nucleon into a hyperon (containing the s quark) and
a kaon (containing the s̄ antiquark) automatically generates asymmetric distributions for the s and
s̄ PDFs.

While the existence of strange asymmetry is not surprising, the magnitude and even the sign of
the asymmetry has been far more difficult to determine. Both phenomenological analysis [7] and
model calculations [8] are subject to fairly large uncertainties, because of various approximations
and model assumptions made about nuclear corrections and functional forms for the PDFs.

A more systematic approach with direct connection to the underlying QCD theory is needed.
In recent work [9, 10], we investigated the strange and anti-strange quark distributions in the proton
within chiral effective theory, which preserves chiral symmetry and gauge invariance.

2. Formalism

The (n− 1)th spin independent (SI) Mellin moments of the quark distribution functions are
defined as

〈xn−1〉Bq =
∫ 1

0
dxxn−1 (qB(x)+(−1)nq̄B(x)

)
. (2.1)

The operator product expansion (OPE) allows these moments to be related to the matrix elements
of local twist-two quark operators Oq by

〈N|Oµ1...µn
q |N〉= 2〈xn−1〉q p{µ1 . . . pµn} , (2.2)

where the operators are given by quark bilinears

Oµ1...µn
q = in−1q̄γ

{µ1
←→
D µ2 . . .

←→
D µn}q , (2.3)

with
←→
D = 1

2

(−→
D −←−D

)
.

In an effective field theory (EFT), these quark operators are matched to hadronic operators
with the same quantum numbers [11] ,

Oµ1...µn
q =

∞

∑
j=1

c(n)q/ jO
µ1...µn
j , (2.4)

where j labels different types of hadronic operators.
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Figure 1: Contributions to s̄ PDF in the nucleon from (a) the kaon rainbow and (b) kaon bubble diagrams,
and contributions to the s PDF from (c) the hyperon rainbow, (d) kaon tadpole, and (e), (f) Kroll-Ruderman
diagrams. The kaons K and hyperon Y are represented by the internal dashed and solid curves, respectively,
and the crosses represent insertions of the operators in Eq. (2.5).

The local twist-two quark operators can be matched to hadronic operators [10, 12]

Oµ1···µn
q = a(n)in

f 2
φ

4

{
Tr
[
U†

λ
q
+∂µ1 · · ·∂µnU

]
+Tr

[
Uλ

q
+∂µ1 · · ·∂µnU

†]}
+
[
α
(n)(Bγ

µ1Bλ
q
+)+β

(n)(Bγ
µ1λ

q
+B)+σ

(n)(Bγ
µ1B)Tr[λ q

+]
]

pµ2 · ·pµn

+
[
ᾱ
(n)(Bγ

µ1γ5Bλ
q
−)+ β̄

(n)(Bγ
µ1γ5λ

q
−B)+ σ̄

(n)(Bγ
µ1γ5B)Tr[λ q

−]
]

pµ2 · · · pµn

+ permutations−Tr . (2.5)

The operators proportional to ᾱ(n), β̄ (n) and σ̄ (n), which are necessary to preserve the gauge invari-
ance, will give rise to the so-called Kroll-Ruderman (KR) diagrams as shown in Fig. 1.

The loop contributions to s̄ and s can be written as a standard convolution of hadronic splitting
functions and strange quark distributions in hadronic configurations,

s̄(x) =
(
∑
KY

f (rbw)
KY +∑

K
f (bub)
K

)
⊗ s̄K ,

s(x) = ∑
Y K

(
f̄ (rbw)
Y K ⊗ sY + f̄ (KR)

Y K ⊗ s(KR)
Y

)
+∑

K
f̄ (tad)
K ⊗ s(tad)

K , (2.6)

where f̄ (y) = f (1− y), and y = k+/p+ is the kaon light-cone moment fraction.
The strange-quark hyperon PDFs, sY , are related to the u and d PDFs in the proton using SU(3)

symmetry,
sΛ = (2u−d)/3 , sΣ+ = sΣ0 = d , (2.7)

while the Kroll-Ruderman distributions, s(KR)
Y , are related through SU(3) symmetry to the spin-

dependent PDFs in the proton,

s(KR)
Λ

= (2∆u−∆d)/(3F +D) , s(KR)
Σ+ = s(KR)

Σ0 = ∆d/(F−D) . (2.8)
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Taking the hyperon rainbow diagram as an example, the hadronic splitting functions can be derived
by computing the nucleon matrix elements of hadronic operators,

f (rbw)
Y K (y) =

C2
KY M2

(4π fP)2

[
f (on)
Y (y)+ f (off)

Y (y)− f (δ )K (y)
]
, (2.9)

where M = M+MY and

f (on)
Y (y) = y

∫
dk2
⊥

k2
⊥+[MY − (1− y)M]2

(1− y)2D2
KY

F(on)(y,k2
⊥)

f (off)
Y (y) =

2
M

∫
dk2
⊥
[MY − (1− y)M]

(1− y)DKY
F(off)(y,k2

⊥)

f (δ )K (y) =
1

M2

∫
dk2
⊥ logΩK δ (y)F(δ )(y,k2

⊥) , (2.10)

with
DKY ≡−

1
1− y

[k2
⊥+ yM2

Y +(1− y)m2
K− y(1− y)M2] (2.11)

being the kaon virtuality for an on-shell hyperon intermediate state, and ΩK = k2
⊥+m2

K .
All other splitting functions can be expressed in terms of the above three functions in Eq. (2.10).

The rainbow and KR splitting functions satisfy

f (rbw)
KY = f (rbw)

Y K + f (KR)
Y K , (2.12)

and the tadpole contribution is related to the bubble term,

f (bub)
K = f (tad)

K . (2.13)

These two conditions guarantee that the net strangeness in the nucleon is zero.
To regulate the ultraviolet divergence, we utilize Pauli-Villars (PV) scheme, which preserves

all required symmetries. For the on-shell splitting function, one replaces the 1/D2
KY propagator by

1/D2
KY −1/D2

µ1
, where Dµ1 = k2−µ2

1 . The regulating function is

F(on) = 1− D2
KY

D2
µ1

. (2.14)

Similarly, the off-shell regulating function can be obtained

F(off) = 1− DKY

Dµ1

. (2.15)

To regulate the δ -function term, we need to introduce two subtraction terms to the kaon propagator,

1
DK
→ 1

DK
− a1

Dµ1

− a2

Dµ2

, (2.16)

where

a1 =
µ2

2 −m2
K

µ2
2 −µ2

1
, a2 =−

µ2
1 −m2

K

µ2
2 −µ2

1
. (2.17)

The corresponding regulating function is

F(δ ) = 1−
a1Ωµ1 +a2Ωµ2

logΩK
. (2.18)

The only free parameters in the calculation are these two cutoffs µ1 and µ2.
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Figure 2: Comparison between the strange xs (solid red curve) and antistrange xs̄ (dashed blue curve) PDFs
from kaon loops, for the cutoff parameters (µ1 = 545 MeV and µmax

2 = 600 MeV), with the global fits.

3. Numerical Results

The parameter µ1 can be determined by fitting the differential cross section data of pp→
ΛX with one-kaon-exchange [9, 10]. The best fit value for the cutoff is µ1 = 545 MeV. As a
conservative estimate of the impact of non-kaonic backgrounds, we also consider the fit that is two
standard deviations lower, which corresponds to µ1 = 526 MeV.

For fixed µ1, the allowed range for µ2 with the PV regularization is mK ≤ µ2 ≤ µmax
2 . The

upper limit µmax
2 can be obtained by requiring the loop contribution to x(s+ s̄) does not exceed the

phenomenological parametrization at Q2 = 1 GeV2 within the quoted uncertainties, x(s+ s̄)loop ≤
x(s+ s̄)tot, for any value of x. This is illustrated in Fig. 2, for the preferred value µ1 = 545 MeV,
where the phenomenological results are taken from MMHT [13] and NNPDF [14] collaborations.
Using the lower value, µ1 = 526 MeV, permits a higher upper limit, µmax

2 = 894 MeV, that still
satisfies the constraint in Fig. 2.
Within these limits of cutoff parameters, the second moment

S− =
∫ 1

0
x [s(x)− s̄(x)]dx (3.1)

lies in the range
−0.07×10−3 ≤ S− ≤ 1.12×10−3 . (3.2)

The corrections ∆s2
W to s2

W arising from strange quark asymmetry is given by [15],

∆s2
W |strange =

∫ 1

0
F [s2

W ,s(x)− s̄(x);x]x[s(x)− s̄(x)]dx (3.3)

at Q2 = 10 GeV2. Varying the µ1 and µ2 parameters over their maximally allowed range, we find
a correction, ∆(sin2

θW ), to the weak angle from the strange asymmetry of

−7.7×10−4 ≤ ∆(sin2
θW )≤−6.7×10−7 . (3.4)
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This is of the right sign to reduce the discrepancy between the NuTeV value and the world average,
but the magnitude is too small to account for the anomaly.

4. Conclusion

We have calculated the full set contributions to s− s̄ asymmetry within chiral effective field
theory. Both strange and anti-strange quark distributions can be expressed as a standard convolution
form. Our analysis reveals new contribution to the s̄ PDF, which is proportional to δ (x), as well as
small but nonzero valence-like component of the s PDF. By taking into account the experimental
data from inclusive Λ production in pp scattering and the latest results from global PDF fits, our
analysis gives the most reliable estimate to date of the strange quark asymmetry. Its effect on the
NuTeV anomaly is also extracted, which only reduces the NuTeV anomaly by less than 0.5 σ .
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