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1. Introduction

Discovery of large transverse single-spin asymmetries (SSA), such as Ay in the pion produc-
tion in proton-proton collision (p'p — X)) [1, 2] and hyperon polarization in unpolarized pro-
ton proton collision (pp — ATX) [3], triggered lots of theoretical studies on the origin of SSAs.
There have been two QCD mechanisms which can account for large SSAs in various processes
in pp and ep collisions. One is the “naively 7-odd" distribution and fragmentation functions in
the transverse-momentum-dependent (TMD) factorization [4] which describes SSAs in the small
transverse momentum region, Aqcp < P, < Q, where Q is a hard scale in a process and Pr is
a transverse momentum of the observed hadron. The other is the twist-3 effect caused by multi-
parton correlations in the collinear factorization, which describes SSAs at large transverse momen-
tum, Agcp < Pr ~ Q [5, 6]. It has been also shown that, for Drell-Yan and semi-inclusive deep
inealstic scattering (SIDIS), these two mechanisms are equivalent in the intermediate region of the
transverse momentum [7, 8, 9]. It is to be noted, however, that the TMD factorization does not hold
in general for hadron production in hadron-hadron collisions [10].

These formalisms have been also applied to other spin asymmetries. For example, the double
spin asymmetry Ayr in the hadron production in the collision between the longitudinally and trans-
versely polarized nucleons, pp! — 7X, is also a twist-3 observable in the collinear factorization.

In this talk, I will discuss recent development in the study of spin observables based on the
collinear twist-3 approach. The remainder of this talk is organized as follows: In Sec. 2, I first
summarize the fundamental feature of the collinear twist-3 formalism. In Sec. 3, T will discuss
some of the recent applications to phenomenology in pp collisions. Sec. IV is a brief summary of
this talk.

2. Twist-3 formalism and multi-parton correlation functions

2.1 Three types of twist-3 distribution and fragmentation functions

We first summarize the distribution and fragmentation functions which are necessary for the
calculation of twist-3 cross sections. The collinear quark distribution functions in the nucleon are
defined from the lightcone correlator

*dA
yx) = [ 5 e(PS|g;(0) 0: Anlgi () PS) @)

where ¢; is a quark field with the spinor index 7, and |PS) is the nucleon state with momentum
P (P> = MZ%) and the spin vector S (P-S = 0). For P* = (E ,1_5) we define two lightlike vectors
pt and n* as pt = (P+/\/§)(1,ﬁ/|ﬁ|) and n* = (1,—I3/|I3|)/(\/§P+) with P = (E + |ﬁ|)/\/§,
which satisfy P* = p* + (M3 /2)n* and p-n = 1. Decomposition of ®(x) defines the quark dis-
tributions listed in Table 1. [0; An] is a gauge link connecting 0 and An. Likewise collinear quark
fragmentation functions can be defined from the fragmentation correlator

/ 0| [£oom; 0] gi(0) | PuSn; X )(PuSh; X | Gj(Am) [Am; £eom]|0). (2.2)

The hadron momentum P, ( MZ) can also be decomposed as P, = ph + (M,% /2)m* by intro-
ducing two lightlike vectors ph and m* which are defined s1m11arly to p* and n*. Fragmentation
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functions defined from A(z) are summarized in Table 1. For precise definition of each distribution
and fragmentation function, we refer the readers to [11]. We name the twist-3 functions defined
from ®(x) and A(z) as intrinsic twist-3 distribution/fragmentation functions.

N\ q Ave. S| N h\q Ave. S| N
Ave. | fi(x), e(x) Ave. | D(z), E(z), H(z)
S” g1(x) | hp(x) SH E;(2) Gi(z) | Hp(2)
. gr(x) | m(x) Sy Dr(z) Gr(z) | Hi(2)

Table 1: Collinear quark distribution functions in the nucleon (left) and quark fragmentation functions for
spin-1/2 hadron (right) which are classified by the spin of the hadron and a quark. In the top table e, i;, and
gr are intrinsic twist-3 distributions while others are twist-2 distributions. In the bottom table, E, Hy, and
G are naively T-even intrinsic twist-3 functions, while H, E;, and Dy are naively T-odd intrinsic twist-3
functions. Others are twist-2.

The second type of twist-3 functions are called kinematical ones and are defined from the
transverse-momentum-dependent correlators as

P (x /dzkr Dij(x, kr), Af ):/dZPLPiAij(ZaPL)a (2.3)
where ®(x,kr) and A(z, p, ) are given as
d? .
@y (x, kr) / / ZT eixA+ikr-zr (P,S|G;(0) [0; con][oon; con + z1]
X[eon+zr; An+zr]qi(An+2zr)|P,S), (2.4)

1 A’z _ia_,
Aij(z,pL) = FZ / / L 2P| [droom + ooz 5 Foom] [£eom; 0] gi(0) | PuShs; X )
c X

><(PhSh;X|qj(),m—i—zJ_) [Am+zy 5 feom+ 2z, |[foom +z, ;Feom +ooz, |[0). (2.5)

Decomposition of & ;;(x) and AD ;;(2) defines kinematical twist-3 functions as listed in Table 2.
The third type of the twist-3 functions are called dynamical twist-3 functions and defined from
the quark-gluon correlator:

dA >~ d _ .
(5, = / [ S R 51 (0)[0; pn)igng FP (un) [sn; )i () |P,S).
(2.6)

T AR ik i(l-g ,
Myl = 2 [ 5 [ S 0l s gy 7 ()
X [um; lm]qi(ﬂtm) |PuShs X)(PuSi: X|G;(0) [0; Soom] |0). 2.7)

Decomposition of @, 4j(x,x') and A’; ;j(z,7) defines the dynamical twist-3 functions as listed in
Table 3. The dynamical twist-3 distribution functions are real, and have definite symmetry under
x <> x': Hpy and Fpr are symmetric, while Hy; and G are anti-symmetric. The dynamical twist-
3 fragmentation functions are complex functions: The real part is naively 7-even, while imaginary
part is naively 7-odd. Neither real nor imaginary parts have definite symmetry properties. The
support of dynamical twist-3 functions is |x| < 1, || < I, |¥' —x| < 1 for distribution functions and
0<z<1,z<7 < oo for the fragmentation functions.
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N\q| Ave. S| Sy h\q| Ave. S| Sy

Ave. hll(l)(x) Ave. Hll(l)(z)
S} g () S| Hi' (@)
Si | fir ) | 67 ) . |07 | 6@

Table 2: Kinematical twist-3 distribution functions (left) and fragmentation functions (right) classified by
the spin of the hadron and a quark.

Ave. Hpy (x1,x2) Ave. Hpy(z1,22)
S| Hpp(x1,%2) S| Hpr(z21,22)
Si | Fer(x1,x2), Ger(x1,x2) S. | Drr(z1,22), Grr(z1,22)

Table 3: Dynamical twist-3 distribution functions (left) and fragmentation functions (right) classified by the
hadron spin configuration.

2.2 Structure of the twist-3 cross section
2.2.1 Naively 7-odd observables

For naively T-odd observables like SSAs, the cross section occurs from an interference be-
tween amplitudes which have different complex phases. This leads to the following features in the
Ccross sections.

(i) For the contribution from the twist-3 distribution, the cross section can be written solely by
using the dynamical twist-3 distribution functions and the corresponding partonic cross section is
caused from the imaginary part (6-function piece) of an internal propagator in the hard part [5, 6].
This pole contribution fixes the momentum fraction in the dynamical distribution F (x1,x;) as either
x1=x3,x=0(G{=1o0r2)orx;#0 (=1 or?2), which are often called soft-gluon-pole (SGP),
soft-fermion-pole (SFP) or hard-pole (HP), respectively. In the LO spin-dependent cross sections
for p'p — hX (h =&, y) [12, 13, 14] and pp — ATX [15], only massless particles (quark, gluon
and photon) participate in the hard scattering, and thus only SGP and SFP appear. For Drell-Yan
(p"p — y*X) and SIDIS (ep’ — ehX), HP as well as SGP and SFP contribute [6, 7].

(ii) For the twist-3 fragmentation contribution, naively 7-odd intrinsic and kinematical functions
and the imaginary part of the dynamical functions are convoluted with the nonpole piece of the
partonic hard scattering part to give rise to the cross section [9, 16, 17].

2.2.2 Naively 7-even observables

For such observables like A;7 in hadron production, /p’ — X [18], pp' — X [19, 20],
both twist-3 distribution and fragmentation functions appear in the cross section as nonpole con-
tributions. In particular, the real part of the dynamical twist-3 fragmentation functions contribute.
Therefore T-even and T-odd observables probe different aspects of the collinear twist-3 formalism
and the hadron structure.

2.3 Operator constraints for the twist-3 functions

The twist-3 functions given in Tables 1-3 are not independent but obey constraint relations
which follow from the QCD equation of motion (EOM) and the Lorentz invariance property of
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the correlator for each distribution and fragmentation function. The latter is a nonlocal version of

the operator product expansion (OPE). In [11], we derived the complete set of those relations, in

particular, those for the twist-3 fragmentation functions are new. Here we list the results.

2.3.1 EOM relations for twist-3 fragmentation functions

(i) Unpolarized hadron:
1y, H(@) > d7 3[Hry(z,7)]
Hl (Z) B ZZ + z ZTZ 1_1 '
z 7
E(z) _ [~dd RAry(z,2)]  my
_ — = D

where 3 and R represent imaginary and real parts, respectively.
(ii) Transversely polarized spin-1/2 hadron:

40y = Do), =42 SiDrred))-Si0rr 2]

z ZIZ

m
— —Hi(2) +

z Mh Z/Z

(iii) Longitudinally polarized spin-1/2 hadron:

Ei(z) __ [~dZ S[Hp(e,7)]

T A A S
z 7

L),y Hi(z)  m = d7 R[Hpr(z,7))]

Z

2.3.2 Lorentz invariance relations for twist-3 fragmentation functions

1
/°° dZ R[Dpr(z,2)] — R(Grr(z,7)] ‘

(2.8)

(2.9)

(2.10)

@2.11)

(2.12)

(2.13)

In this subsection, we list the relations which follows from the Lorentz invariance of the cor-

relators. We present the relations in the form of the so-called Lorentz invariance relations (LIR)

which are obtained by combining the OPE relations with the EOM relations.
(i) Unpolarized hadron:

H(Z) d 1(1) 2 /°° d7 S[FIFU(Z,ZI)]
—=—(1l—-z—|H — = —
z < ¢ > r e zJ): 72 (1)z—1/7)?
(ii) Transversely polarized spin-1/2 hadron:
Gr(z) Gi(z) < d) (1) / d7 R[Grr(z,7)]
e _ 2 l—7z— 1\ G _z RS )
z z “dz i7 (2 2l 22 (1z=1/2)

Dy a\ . d7 S[Dpr
z(Z) =— <1 _Zd_z> DIT(I)(Z) - _z ’Zz M

(iii) Longitudinally polarized spin-1/2 hadron:
A, H d 2 [~ d7 R[Hr(z,7
MZM_O_Z >HL(1)(Z)+E/ 7 R[Hpo(z,7)]

z z 22 (1/z—1/2)’

(2.14)

(2.15)

(2.16)

2.17)
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Using the EOM relations and LIRs, one can eliminate the intrinsic and kinematical twist-3
functions in favor of the dynamical twist-3 functions and the twist-2 functions. In this sense the
intrinsic and kinematical twist-3 functions may be regarded auxiliary functions. On the other hand,
in the leading-order calculation, simple structure of partonic hard cross sections sometimes leads
to a compact formula for the twist-3 cross sections in terms of the intrinsic and kinematical twist-3
functions [20].

2.3.3 Lorentz invariance of the twist-3 cross sections

Twist-3 cross sections can be obtained as a convolution of the hadronic correlators introduced
in Sec. 2.1 and the corresponding hard part. The resulting twist-3 cross sections involve intrinsic,
kinematical and dynamical twist-3 distribution and fragmentation functions together with twist-2
functions. In the decomposition of the hadronic correlators, the coefficients of the twist-3 functions
contain lightlike vectors n and m, and thus the expression for the cross sections also contain these
vectors. On the other hand, the cross section should have a Lorentz invariant expression in terms
of only the physical vectors such as momenta of the particles participating in the process and the
spin vectors. Though n and m are uniquely determined from P and P, their expression in terms of
the physical vectors depends on a frame we choose, which makes the frame-independence of the
cross section unclear.

In [11] (see also [18]), we investigated this point, using, as an example, the inclusive hadron
production in the lepton-nucleon collision, e(/) + P(P) — h(P;) + X. We define Mandelstam vari-
ables for this process as S = (P+1)%, T = (P — P,)*> and U = (I — P;)?. Tn the cross section, [, P
and P, can be regarded as lightlike in the twist-3 accuracy, and therefore P and P, can be identified
as p and py, respectively. In the eN center-of-mass frame, n* = 2/*/S. In the hN center-of-mass
frame, n* = —2P;' /T and m* = —2P* /T. After obtaining the twist-3 cross sections in terms of
n and m, one can eliminate them in terms of the physical momenta. For eN T hX, eN' — KX,
eN — ATX and éN — ATX, we have shown that the EOM relations and LIRs, and

AFer(x,x) = fin (%), aHpy (x,x) = hi " (x), (2.18)

lead to frame-independent expression for the twist-3 cross sections in terms of the physical mo-
menta.

3. Twist-3 phenomenology for SSA at RHIC

In this section, as an application of the twist-3 analysis to phenomenology, I will discuss Ay
in inclusive pion production and direct photon production in pp collisions at Relativistic Heavy
Ion Collider (RHIC) of Brookhaven National Laboratory. For pp — ©X, the next-to-leading order
(NLO) perturbative QCD can describe the unpolarized cross section very well [21]. Therefore,
as a first step, it makes sense to apply the fixed-order perturbative QCD in the collinear factor-
ization formalism to the polarized cross section. We also mention it’s been known that the TMD
factorization is not valid for inclusive hadron production in pp collisions.
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3.1 Ay for p'p — nX with twist-3 fragmentation

Three kinds of twist-3 cross sectoins contribute to the single-spin-dependent cross section for
p'p — nX:

AG ~ {Fer,Grr }(x1,X%2) @ f(X) @ D(2) ® 64 + G;g(xl,xz) ® f(¥X)®D(z) ® 63
+h () ® f() © {H(2), H (@), Hru(21,22)} ® 6c + i (x) ® Hpy (¥),%) © D(z) @ 6p,
(3.1)

where the first, second and third nonperturbative function in each term represents the distribution
function in the polarized nucleon, the distribution function in the unpolarized nucleon, and the frag-
mentation function for the final pion, and o, g c p stand for the corresponding partonic hard factor.
G;g is the three-gluon correlation function in the polarized nucleon. There had been several analy-
ses by assuming the Ist term is the main origin of the observed asymmetry [12, 13, 22]. However,
it’s been pointed out that the resulting SGP function Fpr(x,x) (Note Grr(x,x) =0 by symmetry)
has a sign opposite to what is expected from the analysis of SSAs observed in SIDIS [23], which is
known as the “sign mismatch" problem. The 4th term was studied in [24] and it was shown that the
partonic hard cross section o is negligible (6p < 64). The 2nd term was analyzed in [25], and it

70 caused

was shown that it can’t be a main origin of the asymmetry since the pattern of Ay for
by G;g is not consistent with the observed one. Under this circumstance, the remaining sources
could be the 1st and 3rd terms in (3.1). The LO cross section for the 3rd term was derived in [26],
and a numerical analysis of the RHIC Ay data for the pion production was performed in [27] by
including the Ist and 3rd terms. In this analysis, the SGP function Frr(x,x) was fixed by the Sivers
function obtained from the analysis of the SSA in SIDIS through the relation (2.18). The cross

section for the 3rd term reads [26]

dx' 1 1 1
X xXS+T/z—xT—xi

do(S,) 2002M,,

§ ! dZ
DB, S €LapSt MZZ/ /

i ab,.c Zmin mm

Eh

/e . .
xh ()£ () Km/C(Z) A (Z)> S+ H (S}

dz; 1 1 .
427 / — Imer/c(Z Z1) — S}?FU],

77 1/z—1/z1 z/z1
(3.2)
where A (z) (~ H;" M (2)) is given in terms of the Collins function Hi- as
A7) =2 [ &k, —ﬁ Hi™ (2, 2. (3.3)

h

The intrinsic twist-3 fragmentation function H(z) is determined from HlL m(z) and the dynamical
twist-3 fragmentation function Hyy(z,z1) by the EOM relation (2.8). In [27], HlL m(z) and the
transversity distribution A (x) in (3.2) were fixed by the hadron production in e*e™-annihilation
and SIDIS, and Hpy(z,z1) was determined by fitting to the RHIC Ay data. We recall that with
the SGP function determined by (2.18) the first term in (3.1) gives small Ay with opposite sign



Short Title for header Yuji Koike

(“sign mismatch"). The result shows that Hxy(z,z1) plays a crucial role to reproduce the data:
If one sets Hry (z,z1) =01in (3.2) and the EOM relation (2.8), one can not obtain an appropriate
magnitude for Ay although the remaining contribution in (3.2) gives the correct sign for Ay. It was
found that nonzero Hyy (z,z1) can reproduce experimental Ay, which shows that the fragmentation
contribution may be a main cause of the observed Ay at RHIC. In this analysis, however, the LIR
(2.14) was not taken into account. Accordingly, to draw a definite conclusion on the role of the
fragmetation contribution, one needs to reanalyze the data, taking this relation into account.

3.2 Ay for p'p — yX

The direct photon production is free from fragmentation ambiguity, and thus it is an ideal
process to investigate the nucleon structure. The twist-3 spin-dependent cross section for pTp — yX
consists of three parts:

AG ~ {Fpr,Grr}(x1,%) @ f(x') @ 64 + G;g(xl ,2) ® f(*') ® 6+ hi(x) @ Hry (x],%,) ® 6¢.
(3.4)

The LLO SGP and SFP cross sections for the 1st term were derived in [12, 14] and [28], respectively,
and their effect on Ay at RHIC energy was studied in [29]. It shows that the SFP contribution is
negligible compared to that from SGP, and the latter can cause nonzero Ay only at xp > 0, i.e.,
direct photon production in the forward hemisphere with respect to the polarized proton. The cross
section for the 2nd term was derived in [30], which shows that the 2nd term can cause nonzero
asymmetry only in the backward direction (xz < 0) and its magnitude is very sensitive to the small-
x behavior of the three-gluon correlation function. The cross section for the 3rd term was derived
in [31], which shows that the SFP cross section is identically zero and the SGP contribution is
also negligible compared with the Ist line. From these studies, one can conclude that the SGP
component of the 1st line is the only source for AK, at xp > 0, while the three-gluon correlation
(2nd term) is the only one for AK, at xp < 0. Therefore, AK, plays an important role to determine
these correlation functions.

4. Summary

In this talk, I have summarized some of the recent develoment in the study of spin observables
based on the collinear twist-3 approach. The LO cross section formula have been derived for
most of the relevant processes in ep and pp collisions. The next step will be an inclusion of NLO
corrections, which enables more realistic study on the RHIC data as well as future Electoron Ion
Collider experiment.
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