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We investigate the ΛΛ, NΩ and K−p momentum correlations in high-energy heavy-ion collisions
and their relevance to the hadron-hadron interactions. For R/a0 < 0, |R/a0| � 1 and R/a0 > 1,
where R and a0 denote the source size and scattering length, the correlation functions at small
relative momenta are enhanced, strongly enhanced and suppressed, respectively, by the interac-
tion when the interaction range is short and the single channel treatment is justified. The recently
observed ΛΛ correlation function is found to be enhanced by the interaction from that by the quan-
tum statistics with the feed-down effecs, provided that the pair purity is as large as the statistical
model estimate. The scattering length of the ΛΛ interaction is constrained to be 1/a0 <−0.8 fm−1

by the correlation data. For the Ω−p correlation, we propose to introduce an "SL (small-to-large)
ratio" of the correlation functions for different source sizes in order to evade the contamination
by the Coulomb interaction. In the SL ratios, the above characteristic interaction dependence is
found to be recovered. Then the SL ratio is useful to judge the sign and strength of the scattering
length and consequently the existence of the S = −3 dibaryon state. The coupling effects of the
K−p and K̄0n channels are found to be important for the K−p correlation. The outgoing wave
function in the K−p channel differs from the complex conjugate of that in the K−p scattering due
to the coupled-channel effects. Then we may find peak and dip structures different from those in
the K−p scattering cross section, and it would be possible to examine the interference of the I = 0
and I = 1 amplitudes.
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1. Introduction

Variety of hadrons are produced abundantly in high-energy heavy-ion collisions. Their yields,
nuclear modification factors, flows and fluctuations tell us the properties of created hot and dense
matter such as (T,µ), jet quenching, parton collectivity and the critical point. Heavy-ion collisions
are also useful to study hadron physics. Medium effects and formation mechanisms of hadrons may
be investigated via the invariant mass spectra and production yields [1]. Furthermore, it is possible
to study interaction between hadrons by using the two-particle momentum correlation. The two-
particle correlation is generated by quantum statistics and final state interactions, and also affected
by the size and lifetime of the emission source. Thus if the property of the source is known, we can
access the hadron-hadron interaction. This aspect is extremely useful to explore interactions be-
tween short-lived particle pairs. In recent experiments, correlations have been measured for particle
pairs such as pp̄, p̄ p̄, pΛ, p̄Λ(pΛ̄) and ΛΛ. It would be also possible to measure the correlations
for pairs such as Ω−p, K−p and Ξ−p. The interactions in these pairs can serve as crucial inputs to
understand possible exotic hadrons and exotic matter such as dibaryons and hadronic molecules.

In this proceedings, we discuss the ΛΛ [2], Ω−p [4] and K−p [3] interactions by using corre-
lations measured or to be measured in heavy-ion collisions based on our recent works.

2. Hadron-hadron correlation function in heavy-ion collisions and its interaction
dependence

The two-particle momentum correlation function C(qqq) is defined as the ratio of the two-
particle production probability to the product of single particle spectra. When the emission source
is chaotic, C(qqq) is obtained by using so-called the Koonin-Pratt (KP) formula [5, 6],

C(qqq) =
E1E2dN12/d ppp1d ppp2

(E1dN1/d ppp1)(E2dN2/d ppp2)
'
∫

drrr S12(rrr)
∣∣∣ϕ(−)(rrr,qqq)

∣∣∣2 , (2.1)

where qqq = (E2 ppp1−E1 ppp2)/(E1+E2) is the relative momentum. When the emission time difference
is small, ϕ(−)(rrr,qqq) can be identified as the relative wave function with the outgoing momentum qqq.
The relative coordinate source function S12(rrr) is obtained from the single particle source functions.

When the single particle sources are spherical Gaussians and the particles in the pair are
emitted simultaneously, Si ∝ δ (ti − t0) exp(−xxx2

i /2R2
i ), S12 also becomes a Gaussian, S12(rrr) =

exp(−rrr2/4R2)/(4πR2)3/2 (R =
√

(R2
1 +R2

2)/2). In this case, the correlation function for the iden-
tical spin-half chargeless baryon pair is obtained as

CBB(q) = 1− 1
2

e−4q2R2
+

1
2

∆C(q) , ∆C(q) =
∫

drrr S12(rrr)
[∣∣∣χ(−)(r)

∣∣∣2− ( j0(qr))2
]
, (2.2)

where χ(−) denotes the wave function in the s-wave, and we assume that other partial waves are
not modified. When the source size is sufficiently large compared with the interaction range, it be-
comes reasonable to replace the relative wave function with its asymptotic one, χ(−)(r)→ χasy(r)=
e−iδ sin(qr+δ )/qr = S −1(sinqr/qr+ f (q)eiqr/r). By using χasy and the effective range correc-
tion, one arrives at the Lednicky-Lyuboshits (LL) formula [6],

∆CLL(q) =
1
|S |2

[
| f (q)|2

2R2 F3

(reff

R

)
+

2Re f (q)√
πR

F1(x)−
Im f (q)

R
F2(x)

]
+

1−|S |2

|S |2
F2(x)

x
, (2.3)
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where x = 2qR, F1(x) =
∫ x

0 dtet2−x2
/x, F2(x) = (1− e−x2

)/x and F3(reff/R) = 1− reff/2
√

πR. The
correlation function is given as a function of the scattering amplitude f (q), which is described
well by the scattering length a0 and the effective range reff at low energy, f (q) = (qcotδ + iq)−1 ,
qcotδ =−1/a0 + reffq2/2+O(q4).
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Figure 1: Upper panels: Schematic behavior of the relative wave functions for R/a0 < 0, 0 < R/a0 � 1,
and R/a0 > 1. Lower panels: Correlation function in the LL model [6] as a function of qR and R/a0 in the
case of zero effective range, reff/R = 0.

In Fig. 1, we schematically show the wave functions for several values of R/a0 and the in-
teraction dependence of the correlation function. The asymptotic wave function (rχ) becomes a
linear function of r in the low energy limit, rχasy = e−iδ sin(qr−a0q)/q→ r−a0 (q→ 0), where
we adopt the “nuclear physics” convention for the scattering length, δ '−a0q at low energy. The
wave function is enhanced with a0 < 0 and the correlation function is generally enhanced from
unity. For a0 > 0, the wave function has a node at r ' a0. The node suppresses |χ(r)|2 at r . R
for a small scattering length, a0 . R (R/a0 & 1), while the wave function is enhanced for a large
scattering length, a0 � R(R/a0 � 1) [4]. As shown in the lower panels of Fig. 1, the correla-
tion functions between non-identical particles in the LL model, C(q) = 1+∆CLL(q), demonstrate
the above described interaction dependence. If these features survive other effects such as the
Coulomb potential, quantum statistics, channel coupling and absorption, the correlation function
data can provide information on the scattering length and hopefully other interaction parameters.

3. Hadron-hadron interaction from correlation

3.1 ΛΛ interaction

The H dibaryon (uuddss,S = −2) was first predicted to be a deep bound state below the ΛΛ
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threshold [7]. Recent lattice QCD and ab initio few-body calculations also predict a bound H
in the SU(3) limit and/or at heavier quark masses [8]. While the experimental data do not show
any signals of bound H [9, 10], the pole could evolve into a resonance near the ΞN threshold
at physical quark masses [11], as suggested by the bump structure observed in the (K−,K+ΛΛ)

reaction [12]. Since the correlation function is sensitive to the scatering length, the ΛΛ correlation
provides important information on the pole position if H exists around the ΛΛ threshold [13].
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Figure 2: Left:ΛΛ correlation function obtained by using the LL and KP formulae in comparison with
data [14]. Right: Low-energy scattering parameters (a0,reff) of ΛΛ. Contours show χ2/DOF = 0.65
(λ = (0.67)2, solid contour) and χ2/DOF = 0.56 (free λ , dashed contour) in the LL model analysis of
the correlation data. Symbols show (1/a0,reff) from ΛΛ potentials [15, 16, 17, 18], and shaded areas show
the region favored by the ΛΛ correlation data in Ref. [2](MFO2015). Filled black circle with xy error bar
shows the analysis result by the STAR collaboration, where λ is regarded as a free parameter [14].

Recently, ΛΛ correlation has been measured in high-energy heavy-ion collisions at the Rela-
tivistic Heavy-Ion Collider (RHIC) at the Brookhaven National Laboratory [14]. In order to access
the ΛΛ interaction, we also need to take account of the feed-down and residual-source effecs,

Ccorr(q) = N
[
1+λ (Cbare(q)−1)+ares e−4r2

resq
2
]
, (3.1)

where Cbare is the bare correlation function (Eq. (2.2)), and N , λ , ares and rres are the normalizaiton
factor, pair purity, residual source strength and size, respectively.

In the left panel of Fig. 2, we compare the calculated correlation functions with data. We show
the LL model results with λ regarded as a free parameter (free λ ) and with λ = (0.67)2 (fixed
λ ), where the optimal scattering lengths are found to be positive and negative, respectively. In
the free λ case, the optimal λ is found to be small (λ ' 0.18), then Eq. (3.1) with the quantum
statistics and feed-down effects gives C(q→ 0) ' 0.91. In order to explain the data at small q
(CSTAR(0) ' 0.82), the ΛΛ interaction and residual source need to suppress the correlation and a
positive a0 is favored. The above optimal λ may be smaller than expected. In the experiment, Λs
from weak decays are excluded, then the main feed-down contribution should be the radiative decay
of Σ0 (Σ0→Λγ). Then we can evaluate λ ' [Λ/(Λ+Σ0)]2' (0.67)2 using Σ0/Λtot = 0.278 in p+Be
reaction [19] and Ξ/Λtot = 0.15 in heavy-ion collisions [20]. These ratios are roughly consistent
with the statistical model estimate. By using the parameter set (T,µB,µs) = (162,24,10) MeV [1],
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one obtains Λ/(Λ+Σ0) ' 0.60(0.73) without (with) resonance decays of Σ(1385), Λ(1405) and
Λ(1520). In the fixed λ case, a negative a0 is favored in order to enhance the correlation function
at small q. The χ2/DOF in the fixed λ case is larger than that in the free λ case, but the flow effects
reduce the correlation at small q and lead to a better description of data.

Having these considerations in mind, it is reasonable to conclude that the scattering length is
negative and there is no shallow bound state in ΛΛ. The constraint from the correlation, 1/a0 <

−0.8 fm−1 [2], is consistent with recently proposed ΛΛ potentials [16, 17] and ΛΛ potentials fitted
to Nagara data [18]. The favored effective range is positive, then the pole around the ΛΛ threshold
would not be a resonance but a virtual pole. If this is the case, the resonance H pole (if exists)
should not be very close to the ΛΛ threshold and would be a bound state or a resonance of ΞN.

3.2 NΩ interaction

Another promising dibaryon candidate is NΩ, where the color spin interaction is attractive [21]
and the Pauli principle does not operate. Especially, the J = 2(5S2) state couples to the octet-octet
baryon pair only with L≥ 2 partial waves, and the the width is expected to be small. Actually, the
lattice QCD calculation [22] predicts a bound state. Thus it is interesting to make a prediction of
the Ω−p correlation [4].

In the upper panel of Fig. 3, we show the lattice QCD NΩ potential in the 5S2 channel at large
quark masses (mπ = 895 MeV) [22]. The data can be fitted by a function V (r) = b1e−b2r2

+b3(1−
e−b4r2

)(e−b5r/r)2, as shown by VII in the figure. We also generate potentials, VI and VIII, by varying
the range-parameter at long distance, b5 [4]. The potentials VI,II,III have no bound state, one shallow
bound state and a deep bound state, respectively, at physical baryon masses.

In the Ω−p correlation, we need to take account of the Coulomb potential and 3S1 channel.
The correlation function is given as

C(q) =
∫

drrrS12(rrr)
[
|ψC(rrr)|2 + 5

8
{
|χ(5S2)|2−|ψC

0 (r)|2
}
+

3
8
{
|χ(3S1)|2−|ψC

0 (r)|2
}]

, (3.2)

where ψC and ψC
0 are the Coulomb wave function and its s-wave component. The 5S2 wave func-

tion (χ(5S2)) is obtained with the strong (VI,II,III) and Coulomb interactions. The coupling to the
octet-octet channel in the s-wave leads to strong absorption in the 3S1 channel, we assume complete
absorption for r < r0 = 2 fm and only the Coulomb interaction for r > r0 for χ(3S1).

In the lower left panel of Fig. 3, we show the Ω−p correlation function without the Coulomb
potential for R = 2.5 fm. The scattering lengths for VI,II,III are a0 =−1.0,23.1 and 1.60 fm, which
correspond to R/a0 =−2.5,0.11 and 1.56, respectively. Thus the correlation functions show simi-
lar behaviors to those in Fig. 1.

When the Coulomb potential is switched on, the correlation function is strongly enhanced at
small q and the characteristic features from R/a0 values are obscured. In order to shed light on the
NΩ potential, we propose to introduce an "SL (small-to-large) ratio" of the correlation functions
for different source sizes,

CSL(q) =CR=2.5 fm/CR=5 fm . (3.3)

As shown in the lower right panel of Fig. 3, CSL shows behavior similar to that without the Coulomb
interaction, since the Coulomb effect for small q is largely cancelled. Thus the experimental obser-
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Figure 3: Upper panel: Three typical examples of the NΩ potential. The black circles show the lattice
QCD data with heavy quark masses [22], and the solid line (VII) is the fit to the lattice data. Dotted and
dashed lines (VI,III) denote the potentials with weaker and stronger attractions, respectively. Lower left: pΩ

correlation function for the static source with R = 2.5 fm without the Coulomb interaction. Lower right: The
small-large ratio CSL(Q) for the static source between the different source sizes, R = 2.5 and 5 fm.

vation of the SL ratio would be helpful to determine the sign and strength of the scattering length
of the NΩ potential, and consequently to judge the existence of the S =−3 dibaryon state.

3.3 K−p interaction

The Λ(1405) baryon resonance near the K̄N threshold is considered as a K̄N quasi-bound
state [23]. The uncertainty of the K̄N scattering amplitude at around the threshold is reduced
by the recent kaonic hydrogen data [24] combined with the K−p scattering data in the coupled-
channel approach with chiral SU(3) dynamics [25]. Precise knowledge of the K̄N interaction is
also important for the study of possible K̄ bound states in nuclei [26]. Here we demonstrate that
K−p correlation provides information on the interference of the I = 0 and I = 1 amplitudes.

In the K−p correlation, the coupled-channel effects with the K̄0n channel play an important
role. The outgoing wave function in the K−p channel is found to be [3],

ψK− p(r)→
1

2iqr

[
eiqr− S̃ −1

K− pe
−iqr
]
, S̃K− p = 2

(
S −1

0 +S −1
1

)−1
, SI = e2iδI , (3.4)

where δI denotes the channel phase shift. It is interesting to find that S̃K− p is different from the
S-matrix in the K−p scattering, SK− p = (S0 +S1)/2.

In Fig. 4, we show the K−p correlation function obtained by using the KP and LL formulae
with the K̄N potential in Ref. [27] based on the NLO chiral SU(3) dynamics [25]. The interaction
range of the potential (0.4 fm) is much smaller than the source size R = 3 fm, then both the KP
and LL formulae predict similar results. It should be noted that the Coulomb interaction is not

5



P
o
S
(
I
N
P
C
2
0
1
6
)
3
3
4

Hadron-Hadron Correlation and Interaction from HIC Akira Ohnishi

 0.95

 1

 1.05

 1.1

 0  0.1  0.2  0.3

C
(q

)

q (GeV/c)

K
-
p correlation function

IHW amplitude

KP formula
LL model

Figure 4: K−p correlation function obtained with the potential [27], which is fitted to the amplitudes [25].
Solid and dashed lines show the results in KP and LL formulae. The source size is set to be R = 3 fm.

included, and will modify the correlation function at small q. In the actual measurement, the
Λ(1520) resonance may affect the correlation around q∼ 0.24 GeV/c.

It is interesting to note that the bump and dip structures around q ∼ 0.05 GeV/c and q ∼
0.12 GeV/c do not appear in the K−p scattering at the corresponding energy. It turns out that these
structures arise from the interference between two amplitudes of I = 0 and I = 1 components in
S̃K− p. In this way, the K−p correlation function gives information complementary to that from the
elastic K−p scattering.

4. Summary

The two-particle momentum correlation in heavy-ion collisions shows characteristic depen-
dence on the hadron-hadron interaction. For negative, large and positive scattering lengths, the
correlation functions at small relative momenta are enhanced, strongly enhanced and suppressed,
respectively, by the interaction. We have demonstrated that this characteristic behavior would be
observed when the pair purity is sufficiently large. The scattering length of the ΛΛ interaction is
constrained to be 1/a0 < −0.8 fm−1 by the correlation data, if the pair purity is as large as the
statistical model estimate. The "SL (small-to-large) ratio" of the Ω−p correlation functions for
different source sizes is found to show the above interaction dependence and to be useful to judge
the existence of the S = −3 dibaryon state. The K−p correlation function is predicted to show
non-monotonic behavior due to the interference of the I = 0 and I = 1 amplitudes. The correlation
function is thus useful to obtain information on hadron-hadron interactions even for the pair of
short-lived particles.
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