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Chiral pair fluctuation are considered near the phase boundary of the inhomogeneous chiral phase

(iCP). The fluctuations are then bosonized and an effective action for the chiral pair fluctuation

is basically constructed by considering the ring diagram of the polarization function. We can

evaluate the self-energy and effective four point interaction among fluctuations in a consistent

way. The peculiar dispersion of the fluctuation, reflecting the spatially inhomogeneous transition,

gives rise to interesting and qualitative results. Thermal fluctuations prohibit the second-order

transition, while the effect of the quantum fluctuations is rather modest. Quantum and thermal

fluctuations changes the second-order transition to the first-order one by changing the sign of

the effective four-point interaction between effective bosons. These features may be observed by

relativistic heavy-ion collisions through the analysis of the thermodynamic observables. Distinct

from the second-order phase transition, the first moment such as entropy exhibits an anomalous

behavior due to fluctuations, which may be one of the signals of the phase transition to iCP. Some

similar aspects are also remarked between iCP and the FFLO state in superconductivity.
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1. Introduction

There are many studies about the QCD phase diagram theoretically or experimentally on the
temperature (T) and chemical potential (µ) plane, where one may expect various phase transitions
such as deconfinement transition or chiral transition. For the latter case, the system stays in the
spontaneously symmetry broken (SSB) phase in the lowµ andT region, while chiral symmetry
should be restored at highµ or T region. Recently a possibility of the spatially inhomogeneous
chiral phase has been suggested and extensively studied in the various situations or within various
theoretical frameworks [1, 2, 3]. Inhomogeneous chiral phase (iCP) is specified by the generalized
quark condensate,

M = ⟨q̄q⟩+ i⟨q̄iγ5τ3q⟩
= ∆(r)exp(iθ(r)) , (1.1)

where amplitude∆(r) or phaseθ(r) is spatially modulating. Note that it includes the pseudo-scalar
condensate as well as the usual scalar one. An example of the condensate may be the dual chiral
density wave (DCDW), which describes the one dimensional modulation with∆ = const.,θ = qc · r
[1]. The diagram of iCP has been studied within the mean-field approximation (MFA), using the
effective models of QCD such as the NJL model. Fig.1 shows the phase diagram on theT−µ plane
for DCDW: there appear three phases (SSB, chiral-restored and iCP phases ) separated by the two
boundaries (denoted byL andR) and these phase meet at the triple point called the Lifshitz point
(LP). We can see the similar phase diagram for other cases like the real kink crystal (RKC) [2],
which is specified by the real and one dimensionally modulating condensate,θ = 0,∆(r) ∈ R. The
effects of the magnetic field and the topological features of iCP have been also discussed [4, 5, 6, 7].

However, there are few studies about the fluctuation effects around the condensate. The fluc-
tuations should consist of quark-antiquark pairs or quark particle-hole pairs and bear a bosonic
nature. Two of the authors (T.T. and T.-G. L) have discussed the stability of the one-dimensional
structure in iCP against the Nambu-Goldstone excitation [8]. These authors have found that the
long range order is washed away by the thermal excitation of the Nambu-Goldstone modes, but
the quasi-long-range order is realized instead. The correlation function in iCP has been shown to
be algebraically decaying at large distance, which may imply that iCP could be considered to be
realized in a realistic situation.

Here, we discuss the fluctuation effects near the phase boundary. iCP is surrounded by the
L andR boundaries. TheL boundary depends on the definite form of the condensate, but theR
boundary should have a common feature to various condensates; there should be no distinction
because the restored phase is chirally symmetric and we cannot see what type of the condensate
is realized after phase transition. Actually it has been shown theR boundary is the same for both
DCDW and RKC [9]. TheRboundary indicates the second order phase transition within the mean-
field approximation. Thus we discuss the effect of the fluctuations near theR boundary in this talk
[10, 11].

2. Brazovskii and Dyugaev effect

We start with the partition functionZ within the two flavor NJL model in the chiral limit to
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Figure 1: Schematic phase diagram for chiral transition in the(µ ,T) plane. The shaded domain represents
the inhomogeneous chiral phase (iCP). TheL-boundary is of first or second order, depending on the type of
iCP, whereas theR-boundary is always of second order.

discuss the fluctuation effects in a systematic way [10],

Z =
∫

DqD q̄e−S,

S = −
∫ β

0
dτ

∫
d3x

[
q̄

(
−γ0

∂
∂τ

)
q+G

(
(q̄q)2+(q̄iγ5τq)2)] . (2.1)

Here we introduce the auxiliary fields written by the quark bilinear fields,φa = −2G(q̄q, q̄iγ5τq).
After integrating out the quark variable we have an effective actionSeff in terms ofφa,

Seff ∼
∫ β

0
dτ

∫
d3x

[
1
2!

Γ(2)φ2
a +

1
4!

Γ(4)(φ2
a)

2+ ...

]
, (2.2)

andSeff respectsSU(2)L×SU(2)R∼ O(4) symmetry. Each coefficientΓ(n) denotes the bare vertex
function forφa and can be evaluated within MFA. Separatingφa into the condensate and the chiral
pair fluctuations around it,φa = Φ(∆,q)+ξa, we have the thermodynamic potential,

Ω−Ω f = T ∑
q,ωn

log
(
1−2GΠ̄0

ps(q,ωn)
)
+

+
∫

d3x

[
1
2!

Γ̄(2) |Φ(x)|2+ 1
4!

Γ̄(4) |Φ(x)|4+ 1
6!

Γ̄(6) |Φ(x)|6+ ...

]
, (2.3)

with the Matsubara frequency,ωn = 2nπT. The coefficients̄Γ(n) are the renormalized vertex func-
tions and include the fluctuation effects. The first term comes from the chiral pair fluctuation in the
chiral-restored phase and is given by the ring diagrams composed of the q-anti q and particle-hole
polarization functionΠ̄0

ps. The second term tell us the shape change of the effective potential as
a function of the condensate (Fig. 2). Note that the first term is very similar to the superconduct-
ing phase transition in the context of the Noziere and Schmitt-Rink theory [12]. The second term
implies the non-linear effects beyond the Gaussian approximation.

We look into the polarization function̄Π0
ps in detail. The bare function is given as

Π0
ps(iνn,q) =−∑

m,p
tr
[
iγ5τ3Sβ (p+q)iγ5τ3Sβ (p)

]
, (2.4)
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Figure 2: Effective potential near the phase boundary in the chiral-restored phase. The minimum point is
located at(∆,q) = (0,qc).

with p0 = i(2m+1)πT +µ,q0 = i2nπT, whereSβ is the thermal propagator for massless quarks.
Then we find that the static polarization function exhibits an interesting feature; when∂ 2Π0

ps(0,q)/∂q2|q=0<

0, it has an extremum at non-zeroqc. We shall see that such behavior gives rise to remarkable ef-
fects. The bare Green functionGps for the chiral pair fieldξa then can be constructed by summing
the bubble diagrams made ofΠ0

ps,

Gps(iνn,q) =
(
1−2GΠ0

ps(iνn,q)
)−1

, (2.5)

which behavesGps(iνn,q)−1 ∼ τ + γ
(
|q|2−q2

c

)2
+α|νn| near the phase boundary. One may then

read a peculiar dispersion of the chiral pair fluctuations through the pole ofGps
1 . Since the sign

change of the effective potential at the origin is the signal of the second order phase transition, we
can examine the static Green’s function for the critical point: the singular point ofGps(0,q) resides
on τ = 0, |q| = qc and corresponds to the Thouless criterion [13] within MFA. Thus fluctuations
become soft with momentum on the two-dimensional sphere|q|= qc near the phase boundary.

Once the thermodynamic potential is evaluated by including the fluctuation effects, the renor-
malizedn−th order vertex function can be obtained through the relation,

Γ̄(n) = (2π)3n δ nΩ
δΦ(−q1)δΦ(−q2)...δΦ(−qn)

∣∣∣∣
Φ=0

, (2.6)

which is reduced to the bare vertex functionΓ(n) within MFA. Diagramatic expansion ofΩ can be
done for smallΓ(4) by using Eq. (2.2). In the following we replace the non-localΓ(4) by the local
one,λ , for simplicity. First, we consider the second-order vertex function, which can be obtained
by way of the Dyson equation: theτ parameter inGps is just replaced by the renormalized value
τR,

Γ̄(2)(q1,q2) ∝ δ (q1+q2)
(
GR

ps(iνn,q1)
)
. (2.7)

1In the usual case for the homogeneous phase transitions, the dispersion of the fluctuations should exhibit the form,
τ + γq2, near the critical point.
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Then we have a relation betweenτ andτR,

τ = τR−λT ∑
νn

∫
d3p
(2π)3GR

ps(iνn,p)

≃ τR−
λTqc

4πγ1/2τ1/2
R

, T ̸= 0 (2.8)

≃ τR−
λΛ

48απ5/2γ3/2q3
c
, T = 0, (2.9)

with an ultraviolet cut-offΛ. Here we can see a remarkable effect of the thermal fluctuations:τR

is never vanished from Eq. (2.8), which implies that the second order phase transition is prohibited
by the thermal fluctuations. On the other hand, the quantum fluctuations have a gentle effect by
shifting the critical point from MFA (Fig.3).

Figure 3: τR vsτ for T = 0 andT ̸= 0 cases.τR never reaches 0 to prohibit the second order phase transition
by the thermal fluctuation.

We can see how such difference is produced for quantum and thermal fluctuations by looking
into the one loop integral forτR. All the Matsubara frequencies contribute to the integral atT = 0,
which washed out the singularities included inGR

ps in the integral. On the other hand,n= 0 gives
a leading contribution at finite temperature,

T ∑
ωn

∫
d3p
(2π)3 → T

∫
d3p
(2π)3 . (2.10)

Thus we can see there occursdimensional reduction, so that the momentum integral in the lower
dimension becomes singular.

Next we examine the forth-order vertex function. It is obtained by the infinite sum of the
bubblesL(k) made of the two Green’s function.L(k) gives the long-range interaction between
vertexces in the coordinate space,

Γ̄(4) = (2π)3λ
1− 1

3λL(0)

1+λL(0)
. (2.11)
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L(k) exhibits a singularity atk = 0, since the singularities included in two Green’s function come
closer together ask→ 0,

L(0) = lim
k→0

T ∑
ωn

∫
d3p
(2π)3GR

ps(iωn,p)GR
ps(−iωn,k −p)

≃ Tqc

8πγ1/2

1

τ3/2
R

, T ̸= 0 (2.12)

≃ qc

4απ2γ1/2

1

τ1/2
R

, T = 0. (2.13)

ThusΓ̄(4) changes its sign asτR → 0, which sgnals the first order phase transition. This is called
the Brazovskii-Dyugaev effect [14, 15].

SinceΓ̄(6) is always positive, we can trace the change of the thermodynamic potential on the
µ −T plane.

3. Anomalies of the thermodynamic quantities

Finally, we give a brief argument about the phenomenological implications of the fluctuation
induced first order phase transition. We shall see anomalies of the thermodynamic quantities near
the fluctuation induced first order phase transition.

For the second order phase transition many authors have discussed the various susceptibilities
or second derivatives of the thermodynamic potential near the phase transitions; specific heat or
number susceptibility may be a typical example [16]. For example heat capacity diverges like
(T −Tc)

−1/2 due to the fluctuations near the superconducting phase transition. For the fluctuation
induced phase transition we may expect anomalies in the first derivatives of the thermodynamic
potential instead: number density or entropy density is suitable [17]. Considering the contribution
of the chiral pair fluctuations,

∆Ω = 2TV ∑
q,ωn

ln
(
1−2GΠ̄0

ps(iωn,q)
)
, (3.1)

Accordingly, entropy density, for example, reads [11]

∆s=− 1

τ1/2
R

Nf Ncqc

8π3γ1/2T

∫ ∞

−∞
dp

p(p+µ)[
eβ (p+µ)/2+e−β (p+µ)/2

]2

(
4+

qc

p
ln

∣∣∣∣2p−qc

2p+qc

∣∣∣∣) . (3.2)

Such anomalous behavior may be observed in the relativistic heavy-ion collisions through the mul-
tiplicity of the particle production.

4. Summary and concluding remarks

We have discussed the effects of the chiral pair fluctuations on the inhomogeneous chiral
transition. We have taken into account the non-linear effects of the chiral-pair fluctuations in a
systematic way, beyond the Gaussian approximation. We have elucidated the salient roles of the
quantum and thermal fluctuations separately: the latter is more drastic than the former due to the
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dimensional reduction, but both lead to the fluctuation induced first-order phase transition. The
curvature parameterτ is renormalized by the fluctuation effects to be positive definite atT ̸= 0,
while it is mildly shifted from the one within MFA atT = 0. Thus we have observed that the second
order phase transition is prohibited by the thermal fluctuations. More importantly, the dangerous
diagrams composed of the bubbles of two fluctuation Green’s function become essential and change
the sign of the fourth-order vertex function for both cases atT = 0 and finite temperature. The sign
of the sixth-order vertex function can be shown to be positive definite and we can clearly see
the first-order phase transition. These features are brought about by the unique behavior of the
dispersion of the chiral pair fluctuations and common in any inhomogeneous phase transition.

Note that these particular roles of the fluctuations have some similarities to those of the
Nambu-Goldstone excitations in iCP [11]: the thermal excitations of the Nambu-Goldstone modes
lead to the instability of the one dimensional configuration (the Landau-Peierls theorem [18, 19]),
while it is stable against the quantum excitations.

It should be worth mentioning that the behavior of the vertex functions has been also studied
by solving the flow equations within the renormalization group approach, and the findings with
the perturbative approach have been confirmed for the diblock copolymer [20]. The renormaliza-
tion group is somewhat different from the usual one due to the existence of the special pointqc

in the momentum space, but can be formulated in the similar way to the work by Shankar for the
fermion many-body system [21], where the Fermi momentum corresponds toqc. Since our for-
malism is very much similar to theirs, one may expect that our findings are also confirmed by the
renormalization group approach. This is left for a future work.

The first derivative of the thermodynamic potential exhibits a singular behavior through the
momentum integral, since the dispersion of chiral-pair fluctuations has a minimum on the sphere,
|q|= qc. We have evaluated the number density and entropy density to figure out singular behavior.
Thus the fluctuation-induced phase transition can be characterized by the discontinuity and singular
behavior of the first derivatives.

Finally it should be worth mentioning that our formalism to treat the non-linear effects of
the fluctuations may be also applied to the other cases like the FFLO state in superconductivity;
the Cooper pair fluctuations are composed of the particle-particle ladder diagram instead, but the
dispersion relation has a similar feature discussed here. Accordingly the entropy anomaly may be
a possible evidence for the phase transition.
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