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This paper is organized around two main themes: exotic nuclei and direct reactions. The structure
of exotic nuclei has been studied only from around 1985, because they are very short lived and
before that it was not possible to produce and deliver them as beams on a target. They have large
N/Z or Z/N ratios, are weakly bound and quite extended most of the times. Thus breakup, transfer
and/or inelastic excitations of the surface are some of their most common reaction mechanisms.
On the other hand direct reactions have been studied and understood for a much longer time,
starting with the pioneering experiments in the early ’50 on deuteron induced reactions and the
reaction models developed by S.T. Butler and collaborators. Clearly direct reaction theory began
thanks to the contribution of several Australian physicists and it is very appropriate to discuss it in
the present context, together with its most recent developments in the field of exotic nuclei. Both
subjects are extremely vast and I will discuss here only a few examples of the many interesting
problems that have been encountered and solved in all those years. The choice is very personal
and it is based solely on my research experience.
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For the last thirty years Nuclear Physics has known a big revival thanks to the advent of
Radioactive Ion Beams (RIBs). These nuclei are often called "exotic" because they have unusual
properties, like large neutron over proton ratios, N/Z; small separation energies for the valence
particles; large root mean square radii, r.m.s. , and of course being radioactive they have first of all
very short life times (for example 11Be has a T1/2=13.8sec while 11Li has a T1/2=8.6ms).

The most exotic nuclei are those just beyond the dripline. They are unbound but their ground
state is often a resonance that lives long enough for its properties to be measured. The same
might happen for the lowest excited states and thus these exotic systems are called "nuclei" and
their properties studied in the same way as the more "normal" species that lie more or less closer
to the stability line. Exotic nuclei are very weakly bound in most of the cases. Because of
this their surface is quite extended. Thus several of their new properties have been discovered
thanks to experiments employing peripheral, direct reactions. Such field is so rich and active that
since 1999 there is a biennial conference called DREB (Direct reactions with Exotic Beams) in
which a large number of physicists gather to discuss the latest developments. One special as-
pect of this conference is that the talks are mostly given by very young researchers, often in the
stage of doing a post-doc or even a PhD thesis. The latest edition was held in Halifax, Canada
http://conferences.triumf.ca/DREB2016/index.html.

The physics of exotic nuclei has shed a completely new light on the concept of the nuclear
interaction and the way it acts to bind matter. The basic concepts of Nuclear Physics, such as
nuclear radii, binding energies, decay schemes etc. have been rediscussed. So much so that it has
been deemed necessary to organize schools for undergraduates in which these new concepts not
contained in standard Nuclear Physics textbooks have been presented. One such a School, which
has been held twice so far in Pisa, Italy, is indeed called "Re-writing Nuclear Physics Textbooks..."
( see https://agenda.infn.it/conferenceDisplay.py?confId=12522).

In the following we will review the main steps in the history of direct reactions. It seems that
there is a twenty to thirty year recurrent time span between fundamental turning points in such
a history. The first twenty five years or so were dominated by deuteron and light nuclei induced
reactions (1950-1975) then heavy-ions started to be used as projectiles following the advent of new,
more powerful accelerators, finally from 1985 up-to-date exotic nuclei have dominated the field of
Nuclear Physics with hadronic probes.

1. How it all began

In the book of Norman K. Glendenning, " Direct Nuclear Reactions" [1] we can read about the
beginning of nuclear reaction theory when it was thought that all reactions proceeded via compound
nucleus [2] and resonance phenomena. They were first studied by Feshbach and Weisskopf [3],
Breit and Wigner [4] and Kapur and Peierls [5]. Resonances are nowadays very important to
study unbound nuclei and an updated review can be found in R. J. Charity contribution to the Pisa
Summer School [6].

In the book of Glendenning there is also a nice figure from P. Hodgson book [7], that we report
here as Fig. 1, in which every reaction seems to go through "compound nucleus" apart from direct
reactions which are indicated to go to "...etc". In 1950 the first experiments [8] and theoretical
papers [9] clarified what that "...ect" meant. From the point of view of the experimental observa-
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tions, direct reactions were characterized by forward peaked angular distributions and oscillations.
Compound nucleus reactions had instead isotropic angular distributions. Bethe and Butler [10]
first understood the mechanism of direct reactions as due mainly to a surface diffractive effect and
showed the way to use them as spectroscopic tools. In fact the oscillations were different depending
on the angular momenta involved (both initial and final state and relative motion were important
ingredients). Later the first paper using semiclassical method appeared [11]. Direct reaction theory
was born and its creche was in Australia! Some interesting aspects of deuteron induced reactions
that were clarified are: the importance of matching the initial, final and relative motion energies as
well as angular momenta and the fact that one particle acted as a spectator. The probability of such
a mechanism was enhanced because the deuteron is weakly bound.

Figure 1: Illustration of proton-nucleus interaction mechanisms. [1]

Later on in the ’70 with the advent of new, more powerful accelerators, ions heavier than
deuterons and α-particles were accelerated. Because those reactions were very forward peaked and
the projectiles were now heavy, the angular distributions were often featureless. Then it became
important to find new observables to measure, and the absolute values of transfer reactions were
chosen to be fitted, for example, in order to get spectroscopic information such as the angular
momentum of the initial single particle state and/or its spectroscopic factor. There was a paper that
opened a long series of speculations [12]. It was shown that experimental absolute cross sections
for transfer reactions such as 12C+ 12C→ 11C+ 13C increased at low energy till a maximum and then
decreased quite steeply if the incident energy increased further. Von Oertzen [13] and later Brink
[14, 15] and collaborators showed that this behavior was due to the fact that the transfer probability
was mainly given by an overlap integral of the momentum distributions of the initial and final
single particle states. When the kinematical conditions were such that the nucleon was picked from
the top of its initial distribution and put on the top of the final distribution, the transfer probability
had a maximum. The overlap of the distributions was largest when the classical condition was met
|εi− ε f | = 1

2 mv2, where εi and ε f are the initial and final single particle binding energies while
1
2 mv2 is the incident energy per particle at the distance of closest approach for the trajectory of
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relative motion between projectile and target. Increasing or decreasing the incident energy from
the optimal value lead to a decrease of the absolute cross section. For some time there was also
another puzzle related to some oxygen induced reactions whose absolute cross sections were not
reproduced by the newly written finite rage DWBA code Ptolemy [16]. In this period a series of
papers, both experimental, as well theoretical, tried to clarify the content of the Distorted Wave
Born Approximation [17] that in the meantime had become the standard theoretical tool to analyze
transfer and inelastic excitation data. Later Winther and collaborators [18] developed an analytical
method to disentangle the structure of the DWBA equations and they were able to show that it
was of fundamental importance to use an energy dependent optical potential to describe the initial
and final channel distorted waves. Again similar methods have echoed recently in the physics with
exotic nuclei. See for example [19].

2. Experimental data vs. reaction and structure theories

Direct reactions involve few nucleons and few degrees of freedom but to "model” them re-
quires understanding the whole nucleus and all other possible reactions. One typical example is
elastic scattering and the optical potential necessary to describe it, see M. Borge contribution to
this conference. It requires also the understanding of experimental setups and the handling of data
to extract meaningful observables. Reaction theory has to be simple and transparent in its inter-
pretation to help disentangling the physical processes and allow experimentalists to describe their
data. Finally reaction theorists must understand stucture models ( see for example S. Bacca and
Shan-Gui Zhou talks) and they must be able to develop models that describe data reliably and in a
simple way.
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Figure 2: LHS: Scheme of a 1n-breakup reaction from 11Be projectile in which the core 10Be is left intact. RHS:
1n-brealup from 9C, in this case the "core", 8C is an unbound nucleus which can be defined from the coincidence
measurement of α+4p particles in a charged particle detector such as the HiRA array [20].

To start the discussion on the direct reaction models we show in Fig. 2 two examples of one
neutron breakup reactions from exotic nuclei. On the LHS a 11Be projectile, with a very small
valence neutron separation energy Sn=0.5MeV is undergoing a scattering on a target which could
be a heavy target like 208Pb or a light one like 9Be or even a proton. We imagine the reaction is
proceeding at hight enough energy to suppose a classical trajectory of relative motion. In the insert
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Figure 3: Top: Experimental 6Be invariant-mass spectrum (a) and (b,c) the parallel-momentum distributions [21] of
the reactions: 9Be(7Be,6Be)X, 9Be(7Be,6Li)X at mid-target energy of 65.2 AMeV. In all plots the dashed line on the
P‖ spectra indicates the momentum of the unreacted beam. The dashed lines in (a) show the gate on the 6Be ground
state. Middle: (a) The experimental 8C invariant-mass spectrum and (b) the parallel-momentum distributions [21] of
the reactions: 9Be(9C,8C)X at mid-target energy of 63.8 AMeV. The gate on the ground state of 8C is indicated by
the dashed lines in (a). Bottom: The experimental 8B invariant-mass spectrum for the p+7Be channels and (b,c) the
parallel-momentum distributions [21] of the reaction 9Be(9C,8B1+ )X and 9Be(9C,8B3+ )X at 64.4 AMeV.

we show the elastic scattering angular distributions for 11Be and 10Be measured on a medium
mass target [22]. One can see that 11Be elastic scattering is depleted with respect to the case of a
10Be projectile. If the target is heavy the weakly bound neutron would mainly be emitted because
of a recoil of the 10Be core from which an effective force originates which acts on the neutron.
This is usually known as "Coulomb breakup" [23, 24]. Another interpretation is that the neutron
feels the effect of a virtual photon [25]. If the target is light the neutron can be perturbed only
by its nuclear interaction with the potential representing the target. On the RHS of Fig.2 a more
complicated reaction is illustrated. Here a deeply bound neutron, Sn=14.25MeV, is emitted from
9C. For this nucleus the valence proton separation energy is Sp=1.3MeV, as shown in the insert
from the nuclear data base [26]. The remaining "core" is 8C which is un unbound nucleus. A
coincidence measurement of an α plus four protons and the use of the invariant mass method [20]
allow to reconstruct the spectrum of 8C, which is composed only of resonant states. By gating
on each peak it is possible to reconstruct the momentum distribution of the center of mass of the
α+4p and then deduce the angular momentum of the initial state from its shape and width. Such
a challenging type of experiment and the interpretation of the results are interesting in themselves
and in Fig.3 we give a collection of examples from [21].

However there is also another reason to study 9C, as it is entering the nucleo-synthesis pp-
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chain [27, 28]. In fact one of the most interesting aspects of physics with Radioactive Ion Beams is
the possibility to study on the earth some of the nuclei which are involved in the nucleo-synthesis
of the elements and in particular in explosive nuclear burning where the cross sections of each
nuclear reaction are extremely difficult to measure directly. For such cases, indirect and/or sur-
rogate reactions can be used. One of the most intriguing case is the 8B(p,γ)9C reaction which
ignites the explosive hydrogen burning called hot pp chain [27] or the 7Be(p, γ )8B reaction [28].
The experimental determination of the 8B(p,γ)9C cross section is also important for an accurate
estimate of 7Li synthesis. In fact in explosive hydrogen burning in novae, 7Li can be synthesized
through the β -decay of 7B. On the other hand, the 7B(p,γ)8B reaction converts 7B to 8B, while the
inverse 8B(γ ,p)7B reaction reduces the amount of 8B. Since the two reactions are in equilibrium,
a decrease of 8B due to the 8B(p,γ)9C reaction would lead to a reduction of 7B, and hence to a
lower production of 7Li compared with the case where the contribution of the 8B(p,γ)9C reaction
is ignored.

What makes 9C particularly intriguing from the reaction mechanism point of view is the fact
that the one neutron separation energy is about a factor ten larger than the proton separation energy
while the one and two proton separation energies are almost identical, which is one of the reasons
for 8C being unbound. The reactions involving the nuclei just described are perfect examples of
most discussed reaction mechanisms vs. structure topics of present day physics with RIBs, namely:
unbound nuclei, n-knockout from deeply bound states which involves reduced cross sections, elas-
tic scattering, total reaction cross sections and the optical potentials necessary to calculate them.
We proceed then to discuss such points.

3. A consistent treatment of transfer and breakup reaction mechanisms

Nucleon transfer between bound states and nucleon removal can be described by the semiclas-
sical model of Brink and collaborators [14, 15]. The model was introduced to describe transfer
between bound states and later on was generalized as transfer-to-the-continuum (TC) model to
describe final continuum states. It was introduced for stable, well-bound nuclei [29] and revised
recently [30, 31] on several occasions. The model is mostly analytical and it was originally thought
to be able only to describe gross features of high energy reactions. The main aim was to disentan-
gle the various physical ingredients entering a standard DWBA calculation. Because of its original
simplicity several improvements have been possible. In its latest version, it has been modified to
take into account the competing breakup channels present when one measures neutron knockout
from nuclei where the valence neutron separation energy is much larger than the proton value. A
term e−P−p ≈ 1−P−p(bc), has been introduced which is the probability that the weakly-bound pro-
ton in the projectile does not itself get knocked out in the collision. An equivalent term can also
be used when knocking out a proton from a neutron-rich system where the valence neutrons are
weakly bound. This is equivalent to calculating a Dynamic Polarization Potential (DPP) from the
phase shift [32]. Thus most of the effects found in knockout of nuclei with large differences in
valence neutron and proton separation energies should not be unexpected in view of the fact that
one is measuring a weakly-populated channel which is clearly in competition with another which
has a much higher population probability.
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The differential cross section for a process in which a strongly-bound neutron is knocked out,
but a weakly-bound proton is not, is given as

dσ
nop
TC

dξ
= (ANC)2

∫
∞

0
dbc|Sct(bc)|2e−P−p

P−n(bc)

dξ
, (3.1)

where ξ can be equal to ε f , the final continuum energy of the nucleon with respect to the target,
or to k1, the z-component of the nucleon momentum in the initial state, or to the final core parallel
momentum P‖ defined below. The total breakup cross section is obtained by integrating the differ-
ential cross section over ξ . There is also an integral on the core-target impact parameter weighed
by the probability |Sct(bc)|2 that the core has survived the scattering "intact" and also that the
weakly-bound particle has not been knocked out and absorbed by the target. (ANC) is the asymp-
totic normalization constant as given in [33] in the case of (VMC) initial wave functions which are
normalized to the spectroscopic factor. In the case of Woods-Saxon wave functions normalized to
unity, it is the product of the square root of a shell-model spectroscopic factor and

Ci = lim
r→∞

ψnum(r)/(iγh(1)l (iγr)),

the initial wave-function asymptotic normalization constant given as the ratio of the numerical
wave function and the Hankel function [29], where γ =

√
2mSn/h̄ is the decay length of the initial

wave function and Sn is the nucleon separation energy.
The breakup probability in the projectile reference frame is

dP
dk1
≈ 1

2
Σ j f (|1− S̄ j f |2 +1−|S̄ j f |2)(2 j f +1)(1+Ri f )

[
h̄

mv

]
1
k f
|Ci|2

e−2ηbc

2ηbc
Ml f li . (3.2)

where S̄ j f are neutron-target S-matrices calculated according to the optical model, including the
spin-orbit term of the neutron-target optical potential. The sum over partial waves in Eq.(3.2) is
indeed a sum over total neutron-target angular momenta. Ci=1 if the (ANC) from [33] is used in
Eq.(3.1). The form factor e−2ηbc

2ηbc
is due to the combined effects of the Fourier transforms of the

initial and final wave-functions, while Ml f li is due the to overlap of their angular parts and Ri f are
spin-coupling coefficients. More detailed definitions and discussions are given in Ref.[30, 34].

3.1 Kinematics of knockout

In knockout experiments, it is assumed that a measure of the residual-nucleus (core) P‖ spec-
trum gives a direct information on the momentum distribution of the valence particle in the initial
state of the projectile. This is possible only if one assumes that the transfer of energy into perpen-
dicular momentum is negligible.

Define Tp and Tr as the projectile and residual kinetic energies and Mp, Mr, and Mt as the
projectile, residual (core), and target masses, respectively. The other kinematical variables involved
in the process are k1 = (ε f − εi− 1

2 mv2)/(h̄v), the z-components of the neutron momentum in the
initial state, −εi = Sn ≡ (Mr +Mn)−Mp, the initial separation energy of the valence particle in
the projectile, ε f , the final energy with respect to the target, and 1

2 mv2 is the incident energy per
particle at the distance of closest approach.
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Eq.(3.2) is obtained from a first-order time-dependent amplitude which assumes that the trans-
fer of energy from the projectile to the target is only due to the knocked out particle. Furthermore
it is assumed that the perpendicular component of the neutron momentum k⊥ = iη is conserved.
Notice, η is the parameter which gives the slope of the form factor in Eq.(3.2) and eventually the
shape of the spectrum. Thus, the transfer of energy is all converted into the change of nucleon
parallel momentum according to the above definitions. The core parallel momentum is given by

P‖ =
√

(Tr +Mr)2−M2
r (3.3)

By applying energy conservation between initial and final states Mp +Tp +Mt = Tr +Mr +Mn +

Mt + ε f , then if the target mass is conserved (ε f < Mt ), Mt cancels out and Tr = Tp + Mp −
(Mr +Mn)−ε f = Tp+εi−ε f where εi the valence-neutron binding energy in the projectile defined
above. Under the eikonal hypothesis that energy is converted mainly in parallel momentum, then by
inserting the previous expression for Tr in Eq.(3.3), it follows that the ejectile parallel momentum
is given by:

P‖ =
√

(Tp + εi− ε f )2 +2Mr(Tp + εi− ε f ). (3.4)

Using this and the relative Jacobian, the core parallel-momentum distribution in the laboratory can
be obtained from Eq.(3.2) which is directly comparable to the measured momentum distributions.
Notice that the maximum final nucleon target energies involved are typically around 2 Einc with
Einc ≈ 65 AMeV for the experiments discussed here. In some cases, in order to reproduce the
long tails of the spectra, we have calculated up to ε f =240MeV. Thus the condition ε f < Mt is well
satisfied for a 9Be (Mt=8385.2MeV) target and would be satisfied even for a target as small as the
deuteron, while it is less satisfied at relativistic incident energies. With this we have demonstrated
that the statement contained in [35] about the inaccuracy of our prescription Eq.(3.4), is unjustified.

The original formulation of the TC method is for neutrons as its development goes through
several analytical steps that can be performed only using the asymptotic (Hankel) form of the initial
wave function. However in Ref. [36] we have shown that a neutron wave function corresponding to
an effective separation energy (Se f f

n ) can always be fitted to the exact proton wave function and that
the nuclear-breakup observables thus calculated within the eikonal model are indistinguishable.

3.2 Constraining the (nucleus-nucleus) S-matrix by total reaction cross section calculations
vs experimental data

The potentials used to calculate the energy-dependent S-matrix appearing in Eq.(3.1) are the
n-9Be optical-model potentials recently developed by two methods in Ref. [37]. In one case (AB),
the phenomenological potential consists of a Wood-Saxon real volume and a spin-orbit term, a cor-
rection δV necessary to take into account the surface-deformation effects, and an imaginary term
with both surface and volume components. The other method used in Ref. [37] is the Dispersive
Optical Model (DOM) [38]-[43] where there are the same terms as in the (AB) potential but for the
correction δV to the real potential which arises naturally from the imaginary potential via a dis-
persion relation. Both potentials reproduce the experimental n-9Be elastic, reaction and total cross
section at all energies, in particular the p3/2 resonance at Elab = 0.7 MeV and the d5/2 resonance
at Elab = 3.1 MeV. We show in Fig.4 the total reaction cross sections and the angular distributions
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from Ref. [37]. As one can see in both cases the agreement with the experimental data is striking,
in particular if one considers that we are dealing with the optical potential for scattering on a light,
very deformed nucleus.
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Figure 4: LHS: n+ 9Be cross sections calculated according to Ref.[37] and compared to the experimental data. RHS:
Elastic scattering angular distributions.

By using Eq.(3.1), the core-target interaction is treated in the strong-absorption model which
requires only the knowledge of the imaginary part of the core-target interaction. For consistency
with our n-9Be optical potential, we have constructed [44] a single folded nucleus-nucleus potential
using various core densities ρc and the imaginary part W nt of the (AB) potential discussed above.

This is possible, because in the Glauber description of nucleus-nucleus (core-target in our
case) scattering, the reaction cross section is given by

σ
R
ct = 2π

∫
∞

0
bcdbc(1−|Sct(bc)|2), (3.5)

where
|Sct(bc)|2 = e−2χI(bc) (3.6)

can be interpreted as the probability that the scattering is elastic at a given impact parameter. The
imaginary part of the eikonal phase shift can be written as

χI(bc) =
1
h̄v

∫
dz W ct(bc,z) =

1
h̄v

∫
d2b1

∫
dz W nt(b1−bc,z)

∫
dz1 ρc(b1,z1), (3.7)

where

W ct(rc) =
∫

d3r1W nt(r1− rc)ρc(r1) (3.8)

is the imaginary part of the single folded optical potential given in terms of the imaginary part of
the nucleon-nucleus optical potential W nt(rc) and the matter density ρc(b1,z1) of the core. v is the
nucleus-nucleus velocity of relative motion. According to Ref.[45], this procedure is justified for
the imaginary part of the optical potential as the (AB) and (DOM) potentials are surface dominated.
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Suppose we had used instead a double folding model, as it is done by most of the existing
knockout eikonal models. The phase shift would have been

χI(b) =−
1
2

σnn

∫
db1

∫
dz ρt(b1−b,z)

∫
dz1 ρc(b1,z1). (3.9)

and the n-target potential

W nt(r) =−1
2

h̄vσnnρt(r) (3.10)

would have been a single-folded zero-range n-target imaginary potential. In this case the Wnt po-
tential would have the same range as the target density because σnn, the nucleon-nucleon cross
section, is a simple scaling factor. With such a potential the distinction of surface and volume
terms cannot be usually reproduced. In particular their respective contributions, which are strongly
energy dependent, as shown by phenomenological potentials, cannot be distinguished. Indeed,
Satchler and Love [45] discussing the folding model for 9Be scattering, found evidence of anoma-
lously large deformation and surface effects, which is consistent with the results of [37]. When
experimental data are available, this problem is often solved by renormalizing the folded potential
so that it would reproduce the data. However dynamical aspects of surface reactions which are
typical and very relevant for light nuclei are difficult to reproduce even with a renormalized folded
potential.

Our single folded potential presents thus several advantages with respect to double folding
models:

• The imaginary potential is correctly second order because of the phenomenological nature
of the n-target potential.

• The projectile density can be better tested because one is free from the ambiguity on the
target density.

• The ambiguity on the nucleon-nucleon interaction to be used is overcome.

• The energy dependence of the potential is correctly reproduced because of the underlying
correctness of the n-target potential.

• Deformation, surface modes of excitation and/or breakup of the target are correctly taken into
account and one is left with the task of modeling the same effects for the exotic projectile.

The last point is taken into account by adding to the single-folding potential, a surface potential
of the Woods-Saxon-derivative type.

W (r) =−4aiWsur f
d
dr

1
1+ e(r−Ri)/ai . (3.11)

with very small strength (Wsur f =0.8 to 0.015 MeV). The radius has been taken [44] as Ri=0.92
(A1/3

p +A1/3
t )=3.8 fm, which is close to the distance of closest approach for head on collisions

where the absorption is maximized. On the other hand the diffuseness should be large according to
[21, 32], and equal to ai = 1/(2

√
2mSp/h̄) = 2 fm for 9C, since Sp=1.296 MeV.
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Figure 5: LHS: n-9Be single folded (dotted line) potential from Eq.(3.10) and phenomenological potentials at 65 MeV
from Ref.[37]. Red line is the DOM potential, blue line is the AB potential. RHS: The same at 40 MeV. Middle and
bottom parts: imaginary potentials 9C - 9Be and their volume integrals and r.m.s. from Ref.[44]. See text for details.

In Ref.[44] we have given a series of examples of potentials calculated with the single or
double-folded potential and with the JLM method [46]. We report here in Fig.5, top part, the com-
parison between a n- 9Be potential calculated with the parametrization of [37] or with the single-
folded model Eq.(3.10) using the 9Be density from [47, 48]. Clearly the single-folded potential
simply reproduces the shape of the density of the 9Be target from Ref. [47] while the phenomeno-
logical potential has a shape which represents better the concentration of reaction channels on the
surface. In the middle part of the figure we show the single folded 9C - 9Be potentials obtained
folding the AB potential of [37] with the HF density of 9C from [44]. Finally the surface term
given in equation (3.11) is added to provide the long tail which is necessary to take into account
the surface reaction channels of a projectile such as 9C. In the bottom part of the figure we give for
the same potentials the volume integrals and corresponding r.m.s. values.

We conclude this section showing in Fig.6 total reaction cross sections calculated in [44] for
9C - 9Be scattering and data points from [49, 50, 51]. Our model reproduces very well the absolute
values of the cross sections and their energy behavior. This is very important because it provides
a method by which the density of the exotic projectile can be tested free from uncertainties from
the target density. Thus the |Sct |2 calculated with our model and our potentials can be considered
reliable and we have made a step forward in the accuracy of the calculations of breakup cross sec-
tions. It is evident in fact that if the double folding model gives too small reaction cross section, see
the curve in Fig.6, the same method applied in the calculation of the core-target survival probabili-
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Figure 6: LHS, top: Energy dependence of the reaction cross sections for 9C-9Be calculated according to Eq.(3.5). We
compare results obtained using the the single folded potential with n- 9Be from [37] and various projectile densities (see
[37] ) and JLM [46]. The two full lines are the results of calculations with the double folded potentials with Hartree-Fock
densities. Thick marron line is with HF densities, blu thin line with VMC densities [47]. Data are from Ref.[49]. RHS:
We show here results from the single folded potential plus the additional surface term Eq.(3.11) and a renormalized JLM
and again the data from Ref.[49]. For comparison results obtained for 8Li and 8B projectiles from Ref.[21] using the
single-folded plus surface term potential. Data are from Ref. [50, 51]. LHS, bottom: Integrand of the total reaction cross
section equation. RHS, bottom: Integrand of the breakup reaction cross section equation.

ties, according to Eqs.(3.9,3.10) would provide too large breakup cross sections because somewhat
small impact parameters would correspond to cores surviving with a non negligible probability. In
the bottom part of Fig.6 we show on the LHS the integrant of the reaction cross section formula
Eq.(3.5) while on the RHS we show the integrand of the breakup probability formula Eq.(3.1). One
sees clearly that breakup is strongly localized on the overlap surface of the two nuclei.

Therefore we can interpret the possible reduction in spectroscopic factors extracted from
knockout of a deeply bound particle [35] as partially due to an inaccuracy in the Sct values when
calculated via double-folded potentials. Single folded potentials might be a better choice if the
n-target potential is known sufficiently well as it is the case for 9Be. Another reason might be the
neglect of the kinematical effects and energy-momentum conservation discussed in Sec. 3.1.

The second important point is that since the beginning of studies of the structure of exotic
nuclei, total reaction cross section measurement have been a simple and reliable tool to deduce sizes
of exotic nuclei and a probe for their density distributions. See the the pioneering papers of Tanihata
[52]-[56] and collaborators and the reviews by A. Ozawa [57] and M. Fukuda and collaborators
[49, 50, 51]. Our single-folded potential method constitutes a step forward in understanding the
shape of the matter distributions of exotic projectiles and its relationship with the way it shows up
in a reaction.
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4. Continuum states and unbound nuclei

Figure 7: LHS: Relative energy spectrum n-9Li following 11Li projectile fragmentation [61]. The table shows the
structure inputs used for the s,p, and d final states. RHS: Inclusive excitation-energy spectrum of the 9Be(18O,17O)10Be
reaction at 84 MeV incident energy [64]. Total 1n breakup calculations resulting from the use of the DOM and the
AB potentials [37] are shown as the green continuous and the violet dashed lines, respectively. The renormalized
experimental data of the 9Be(n,nn)8Be [65] and 9Be(n,α)6He [66] reactions are reported as red dotted and blue dotted-
dashed line, respectively. This is to show that they can contribute to the experimental background. The 1n - (Sn), 2n -
(S2n) and α - (Sα ) separation energies are also indicated. Peaks marked with an asterisk refer to the 17O ejectile emitted
in its first excited state at 0.87 MeV.

An important aspect in the study of exotic nuclei is the understanding of spectra containing
low lying resonances and the theoretical description of them. We have shown already in Fig.3 a
series of data and calculations from Ref. [21] which refer to proton unbound nuclei. They can be
created by knockout of a deeply bound neutron from a projectile which is along the proton drip
line. The invariant mass spectra are shown together with the parallel momentum spectra obtained
by gating on the ground state resonance. For those nuclei we have not calculated the invariant mass
spectra while the parallel momenta calculations were done with the formalism described in Sec.
3 and one can see that they agree very well with the data. The absolute cross sections are very
sensitive to the way the |Sct |2 term is calculated and we have seen [21] that using the single folded
potential Eq.(3.8) the knock out cross section for 9Be(9C,8C)X reduces by about a factor three while
increasing the strong absorption radius by 6%. Indeed the very small experimental cross section
of 3.82 mb could be obtained if the strong absorption radius was set to Rs=6.7fm corresponding
to a radius parameter rs=1.61 fm, where Rs is defined by |Sct(Rs)|2=1/2 and Rs = rs(A

1/3
p +A1/3

t ).
This is perhaps not unreasonable considering that 8C is defined by the coincidence measurement of
(α+4p) in which all five particles must have survived an absorptive breakup on the 9Be target.

The invariant mass spectra can be calculated with a method similar to to the TC, the only
difference is that the final state is a continuum state with respect to the core of origin rather than the
target [59]-[62]. We have successfully applied such a method to the study of 10Li and 13Be which
are unbound sub-costituents of the borromean nuclei 11Li and 14Be. In Fig.7 LHS, experimental
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data and our calculations are shown for 10Li. They are in very good agreement, furthermore a more
recent experiment [63] has confirmed our values for the energy and width of the p-state resonance.

Another very intriguing nucleus is 10Be, the core of 11Be. It is itself a radioactive nucleus
and neutron scattering data on it do not exist. It has been studied mainly by β -decay and neutron
transfer. A recent experiment 9Be(18O,17O)10Be [64] has provided the spectrum for both the bound
and some unbound states. It is shown in Fig.7 RHS, together with the calculations made using the
n-9Be optical potential of Ref.[37] within the TC model of Sec.3. The agreement is very good and
once again it shows the powerfulness of the TC to describe both projectile characteristics such as
the parallel momentum distributions of Fig. 3 as well as target resonances as in Fig. 7.

5. Conclusions and outlook: What next for 2017-2050?

We have seen that the use of direct reaction experiments has been of great importance for the
understanding of nuclear structure since the ’50 and in particular in the last thirty years, with the
advent of beams of radioactive nuclei. From the examples given in this paper, we can then draw
the following conclusions and make some predictions for future developments:

• Nuclei can have larger sizes that predicted by formulae of standard textbooks with a radius
parameter depending on the beam incident energy of the reaction used to fix it. We can have
rs=1.4fm at around 20AMeV. Also imaginary parts of optical potential can have very large
diffuseness, a= 1

2γ
=3.2fm for a 11Be induced reaction, obtained as twice the inverse of the

valence nucleon wave-function decay length [22, 32].

• Surface effects, clustering and unbound structures are now under control.

• Structure and reaction models are being unified via ab-initio methods and full inclusion of
continuum spectra (cf S. Bacca talk, and see also Dispersive Optical Model [38]-[43]).

• We still need to understand at a microscopic level the energy dependence of nn and NN
interactions, including optical potentials.

• In the future will we study mainly unbound nuclei via resonance definition, similarly to what
is done in elementary particle physics? (cf. W. Nazarewicz talk).

• Will improvements in numerical techniques allow to solve the nuclear many body problem
”exactly“? and/or will semiclassical-analytical methods survive?

In this paper I have only discussed simple analytical formalisms to describe direct reactions.
There are many groups using instead numerical approaches such as improved DWBA, Continuum
Discretized Coupled Channel (CDCC), R-matrix formalism etc. Details on such methods can be
found in Refs.[67, 68].
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