

Tuning effect in particle masses and nuclear data

Recent analysis of nuclear binding energies and excitations of many magic nuclei allowed a con-

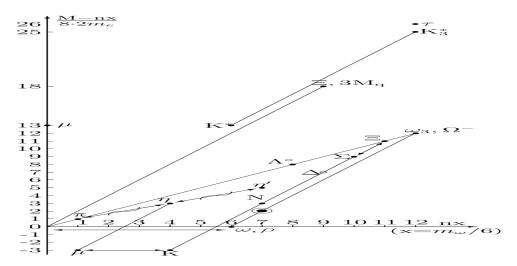
Sergey Sukhoruchkin

B. P. Konstantinov Petersburg Nuclear Physics Institute E-mail: Sukhoruchkin_SI@pnpi.nrcki.ru

firmation of the tuning effect in particle masses. Stable mass/energy intervals coinciding or rationally connected with charge mass splitting of the nucleon $\delta m_N=1293.3$ keV and the lepton m_e =511 keV appear in the shift of the neutron mass relative to integer number of m_e . Using evaluated by CODATA exact ratio 1838.6836605(11) between masses of the neutron and the electron, we determine the shift $\delta m_n = 161.65(6)$ keV from integer number of m_e , namely 115δ - m_e . Period $\delta=16m_e$, determined here with very high precision, is the common for many particle masses, for example, n=13 for the muon mass, n=16 for f_{π} , n=17 for the pion mass, n=18 for a half of nucleon Δ-excitation and n=115 for the neutron mass. This shift in the neutron mass is in a ratio $8 \times 1.0001(1)$ with the nucleon mass difference δm_N . CODATA relation means that nucleon masses are: $m_n = 115 \cdot 16m_e - m_e - \delta m_N/8$ and $m_p = 115 \cdot 16m_e - m_e - 9\delta m_N/8$. The shift of m_e is presumably connected with the baryon number ($m_e/3$ per constituent quark) estimated in NRCQM (Nonrelativistic Constituent Quark Model) as $M_q = m_{\Xi} - /3 = 441$ MeV= $3(\Delta M_{\Delta}=147 \text{ MeV})$, three-fold value of the pion-exchange interaction in NRCQM. Together with the meson constituent quark mass $M_q'' = m_\rho/2 = 409$ MeV, they are in ratios with the vector boson masses equal to the lepton ratio $L=m_{\mu}/M_e=13\cdot16-1=207=M_Z/M_q=M_W/M_q''$. Simultaneously, the ratio between masses of vector Z-boson and the muon $m_u/M_Z=115.9\cdot 10^{-5}$ is very close to QED-radiative correction $\alpha/2\pi=115.9\cdot 10^{-5}$. Such factor with the QED parameter $\alpha = 1/137$ was found between the scalar boson mass M_H =126 GeV, the parameter ΔM_{Δ} =147 MeV and $m_e/3=170$ keV. V. Belokurov and D. Shirkov suggested that the same QED correction can be applied to the electron mass itself. Cumulative effect in the constituent quark mass $M_q = 3 \cdot 18\delta = 3\Delta M_{\Delta}$ could result in the value close to m_e and could be connected with the origin of the mass m_e from the physical condensate and the estimate of the Plank Mass value $M_P = L\Delta M_\Delta (\alpha/2\pi)^{-6}$. We draw attention to the five empirical relations based entirely on the

unexpectedly accurate CODATA relation with the real electron mass and the period $16m_e$.

38th International Conference on High Energy Physics 3-10 August 2016 Chicago, USA Recent analysis of particle masses and new nuclear data [1-3] confirmed CODATA relation between the nucleon (m_n, m_p) and the electron (m_e) masses. It is resulted in the presentation: $m_n = 115 \cdot 16m_e - m_e - \delta m_N/8$ and $m_p = 115 \cdot 16m_e - m_e - 9\delta m_N/8$


with shifts $\delta m_N/8=161$ keV and $m_e/3=170$ keV corresponding to the fine structure with the period $\delta'=9.5$ keV and integer numbers n=17,18 (of this period). Such fine structure (with exactly the same period and n=13-18) was found in nuclear excitations of many near-magic nuclei. In Table 1 [1-3] these values are presented (in the bottom part) as parameters of the expression $n\cdot16m_e(\alpha/2\pi)^XM$ with $\alpha/2\pi=115.9\cdot10^{-5}$ (close to $1/32\cdot27=115.7\cdot10^{-5}$) and different values X, M and n=1,13-18.

Following five empirical correlations could be mentioned [1-5].

- 1) Besides relations M_Z =L M_q and M_W =L M_q'' the masses of scalars (M_H and M_H'' =(2/3) m_t =2 M^{L3} =116 GeV) can be estimated as $16 \cdot 18M_q$ and $16 \cdot 16M_q$ (Tables 1-3).
- 2) Well-known QED parameter for a short distance, $\alpha_Z = 1/129$ (an analog of 1/137) can be used for the interconnection of m_e , m_π and $m_\pi/(2/3)m_t = M_H'' = 115$ GeV= $2M^{L3} = 2.58$ GeV (unconfirmed mass groupings found by ALEPH and L-3 collaborations at CERN). These relation between the top quark and electron masses could be helpful for the understanding of the origin of the color.
- 3) Origin of the dark matter could be connected with the observed shifts in strange octet baryons (two bottom lines in Table 2) and above discussed interconnection between m_e and heavy fermions.
- 4) Evolution of nucleon mass (Fig.1) from the initial value $3M_q$ (top) to $6f_\pi + \Delta M_\Delta = 2M_q'' + \Delta M_\Delta$ (bottom) means the distinguished character of NRCQM-parameters based on QCD gluon quark-dressing effect (Fig.2 in [4]). Progress of nuclear physics in a view of the presence of correlations between m_e and heavy fermions M_q and M_q'' (plus $f_\pi, m_\pi, \Delta M_\Delta$) which are parameters of nuclear models is in line with F. Wilczek expectation about a future great role of "nuclear chemistry" [6].
- 5) Confirmation with nuclear data analysis of intervals/periods Δ (observed in particle masses, boxed in Table 2, including tau-lepton mass) put forward a problem of parameters interpretation.

Table 1. Representation of parameters of tuning effects in particle masses (3 top sections) and nuclear data (bottom) with the expression $n \cdot 16 m_e (\alpha/2\pi)^X M$ with different values of X-power at QED factor $\alpha/2\pi$ ($\alpha=1/137$) and integers M and n=1,13-18. Boxed are five groups of values differing with $\alpha/2\pi=115.9 \cdot 10^{-5}$.

X M	n = 1	n = 13	n = 16	n = 17	n = 18	n = 18·6	Comments
-1 3/2			m _t =172.0				
GeV 1	$16M_q=\delta^\circ$	Mz=91.2	$M_{\rm H} = 115$		$M_{\rm H} = 126$		δ° =7.06
1/2	(m_b-M_q)		$M^{L3} = 58$				
0 1	$2m_d$ - $2m_e$	$m_{\mu} = 106$	$f_{\pi} = 130.7$	m_{π} - m_e	ΔM_{Δ} =147	$2M_q$	
MeV 3			$M''_q = m_{\rho}/2$		$\overline{M_q}$ =441= ΔE_B		NRCQM
1 1	$16m_e$ = δ = $8\varepsilon_\circ$	118		$k\delta$ - m_n - m_e =	$170 = m_e/3$		Part.
-				=161.651			mass
keV 8				$\delta m_N = 1293$			CODATA
1 1	$9.5=\delta'=8\varepsilon'$	123	152	Δ^{TF} =161	170 (Sn)	$\varepsilon_o=2m_e$	
keV 3				$484 (E^*)$	512 (Pd)	<u> </u>	
4		492		648 (Pd)	682(Co)		Nuclear
8		984	1212	1293 (E*)	1360 (Te)		data
2 1,4	$11=\delta''=8\varepsilon''$	143	176	749 (Br,Sb)		ε'=1188	Neutron
eV 4,8		570 (Sb)		1500 (Pd,Hf)	X=3	ε"=1.35	reson.

Fig. 1. Particle masses in two-dimensional representation [1-5]. Values along the horizontal axis are given in units f_{π} =16 · 16 m_e = 130.8 MeV=16 δ , remainders - on vertical axis in units 16 m_e = δ . Main lines correspond to ΔM_{Δ} =147 MeV=18 δ - parameter of quark structure derived from nucleon Δ - excitation close to (1/3) of initial mass of constituent quark M_q and (1/9) of initial baryon mass 3 M_q = m_{Ξ} (top). Nucleon mass (N) is on the line from kaon mass (K) to hyperon mass (Ξ). Nucleon mass within nucleus (circled point) is close to 6 f_{π} + ΔM_{Δ} . Pion mass 140 MeV = f_{π} + δ is rational to masses of Δ , Ξ , Ω and is in equidistancy with pseudoscalars $m_{\eta'}$ - m_{η} = m_{η} - m_{π}^{\pm} (crossed arrow). Tau lepton mass (top) is close to 12 f_{π} +2 m_{μ} (n=12·16+2·13).

Table 2. Comparison of particle masses with the period $16m_e = \delta = 8176$ keV (numbers of periods k).

Particle	m_i, MeV	k	m _i -k·16m _e	Comments (in MeV	() Comments
μ	105.65837	13	-0.6294	$-m_e$ -0.118	
τ	1776.8(2)	$4 \cdot 48 \cdot + 2 \cdot 13$	3	-5.6(2)	diff. $-2m_e$ -(4.6 MeV= Δ)
f_{π}	130.7(4)	16		≈0	
π^\pm	139.5702(4)	17	+0.57624	$+m_e+0.065$	
Δ° -n	294.2(2)	36		$2(\Delta M_{\Delta}=147.1)$	$\Delta E_B = 147.3 \text{ MeV}, \text{ Fig. 4 in [4]}$
M_q NRCQM	441	3.18			ΔE_B =441 MeV, Fig.4 in [4]
$M_H/18\cdot16$	436	3.18-∆		$-5 = -\Delta$	
M_Z/L	440.5	3.18			diff. \approx -2 m_e
t-quark	172000(1000)	24x16x54			169540 MeV= $24\delta^\circ$
η^{\prime} - η , η - π^{\pm}	409	50		≈ 0	
M_q^{Δ} NRCQM	410	50			ΔE_B =409 MeV, Fig.4 in [4]
ρ	775.49(34)	96	-9.40(34)	$-9.20 = -2\Delta$	
M_a'' NRCQM	387.7	48	$m_{\rho}/2$	$-4.60 = -\Delta$	
M_W/L	388.4	3.16	$3f_{\pi}$		diff. \approx -2 m_e
p	938.2720(1)	115	-1.96660		-m _e -(9/8) δ m _N
n	939.5654(1)	115	-0.6726(1)		-m _e -(1/8) δ m _N
Σ°	1192.64(2)	146	-1.05(2)	-0.51·2=-1.02	
Ξ°	1314.86(20)	161	-1.47(20)	-0.51·3=-1.53	

To explain the period of $\delta = 16m_e = 2\Delta - 2m_e$ (with $\Delta = 9m_e$) the symmetry motivated arguments were searched [1-5] starting with indications on the reality of integer ratios and long-range correlations in particle masses and nuclear data. Relation between the constituent quark mass $M_q = 3\Delta M_\Delta$

could be a reflection of the influence of the physical condensate [7] (and might be connected with the gravitation [8,9]). Analysis indicates on the existence of small shifts about 4.6 MeV= $\Delta = 9m_e$ directly observed in the pion's mass splitting and τ lepton mass shift (boxed in Table 2). CODATA parameter $\delta = 16m_e$ can be considered as a result of the relation 1:9=1:(3×(9/3=1/3+8/3)) mentioned in [1-3] after comparison of the lepton ratio L with number of fermions in the central field (Table 3). Integer relation 9=8+1 could be connected with the new value of the principal quantum number in the fermion shell-like system (in accordance with V. Gribov suggestion that three colors are corresponding to three axes in the inner space):

$$= (1/3)m_e + (8/3)m_e = (1/3)M_q + (8/3)M_q$$

$$9m_e = (1/3)m_e + (8/3)m_e = (1/3)m_q + (8/3)M_q$$

$$= (1/3)m_e + (8/3)m_e = (1/3)M_q + (8/3)M_q$$

$$= (1/3)M_q + (8/3)M_q$$

Table 3. Comparison of ratios between masses m_{mu}/M_Z , $f_{\pi}/(2/3)m_t$ and $\Delta M_H/M_H$, QED parameter $\alpha/2\pi$ and numbers of fermions in the central field (central line, boxed in the bottom line is the hole configuration in 1p shell).

N ferm.	N = 1	16	16.13-1	16.16	16.18
Part./par.	m_e/M_q	δ/δ°	m_{μ}/M_Z	$f_{\pi}/(M_H' = 2m_t/3 = 2M^{L3}$	$\Delta M_{\Delta}/M_{H}$
Ratio Nr	$116 \cdot 10^{-5} $ (1/16)	(1)	116·10 ⁻⁵ 12+1	116·10 ⁻⁵ 16	116·10 ⁻⁵ 18
States	$1s_{1/2}^4$		$1s_{1/2}^4, 1p_{3/2}^8, 1p_{1/2}$	$1s_{1/2}^4, 1p_{3/2,1/2}^{8,4}$	
Comm.			hole in 1p shell	filled shells	

Performed here and in [1-5] analysis of particle masses and nuclear data confirmed the presence of the so-called CODATA relation with the fine structure parameters 161 keV= $\delta m_N/8$ and 170 keV= $m_e/3$ as well as the scaling factor $\alpha/2\pi$ equal to QED radiative correction. Possible origin of the baryon number and the color is due to involvement of 1/3 part of the electron mass. Universal character of the electric charge and the spin should be theoretically combined with observed empirical CODATA-relations. These correlations found long ago [9] are confirmed now with analysis of new nuclear data [1]. The role of nuclear data in the study of tuning effect is very important.

References

- [1] S.I. Sukhoruchkin, Proc. 19th Int. Conf. QCD-16, Montpellier; Nucl. Part. Phys. Proc. (in press).
- [2] S.I. Sukhoruchkin, Nucl. Particle Physics Proc. 270-272 (2016) 211.
- [3] S.I. Sukhoruchkin, Nucl. Part. Phys. Proc. **258-259** (2015) 268.
- [4] S.I. Sukhoruchkin, Nucl. Phys. B (Proc. Suppl.) 234 (2013) 241.
- [5] S.I. Sukhoruchkin, PoS (EPS-HEP2015) 527.
- [6] F. Wilczek, Nature **520** (2015) 303.
- [7] J. Gasser and H. Leutwyler, Phys. Rep. 87 (1982) 77.
- [8] S.I. Sukhoruchkin, Prog. and Theses, 40-th Meet. Nucl. Spectroscopy, Leningrad, 1990. Nauka, p.147.
- [9] S.I. Sukhoruchkin, Symmetry Methods in Physics, JINR E2-94-347, vol. 2, p. 528 (1994).