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Dark photons in the decay of a Higgs-like boson
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The couplings of the Standard Model sector to scale invariant degrees of freedom can open the
possibility to search for dark photons (DP). The decay of the Higgs-like scalar boson into a photon
and DP is studied. The latter is mediated by the derivative of the scalar dilaton, emerging of which
is provided by spontaneous breaking of scale symmetry. The limits are set on the DP mass, the
mixing strength between the photon and DP.
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1. Introduction

The interest to search for Dark Matter (DM), in particular dark photons (DP) as a conformal
portal to DM, is increasing from year to year, and still is a mystery puzzle both in cosmology and
in particle physics. The hidden sector containing DP can be explored at low energies (see, e.g.,
refs. in [1]), and in collider experiments at high energies. Increasing of the energy enables one
to test the approximate conformal sector with its couplings to the Standard Model (SM) fields.
In theories where an exact conformal symmetry is spontaneously broken, the low energy effective
theory contains a massless scalar boson, the dilaton. The nature of the dilaton couplings is governed
by the requirement that conformal symmetry be realized non-linearly. To collider physics, it is
important that at the loop level the dilaton has potentially enhanced couplings to gluons and photons
compared to those of the SM Higgs. In contrast to the latter, the dilaton couples to gluons even
before running any SM particles in the loop through the trace anomaly.

We start with the conformal anomaly relevant to the coupling scalar-vector-vector containing
a scale (dilatation) current Kµ and two vector currents which are related to each other, and this
anomaly reflects the violation of scale invariance in SM by quantum effects. Our basis is the ex-
tended group SU(2)L×U(1)Y ×U ′(1)B, where index B is associated with a hidden vector sector
containing DP γ̄ . The standard photon γ may oscillate into γ̄ where the latter would be a short-lived
boson decaying to invisible neutrino-antineutrino pair, γ̄ → ν̄ ν or to light lepton-antilepton pair,
γ̄ → ll̄. If the approximate conformal invariance is broken at scale Λ = 4π f , the low energy spec-
trum of states may contain a light dilaton with its vacuum expectation value (vev) f , a light Higgs
doublet or both. In the absence of the gauge sector that breaks electroweak (EW) symmetry, we
assume the breaking of conformal invariance at the scale Λ triggers EW symmetry breaking at the
scale ΛEW = 4π v < Λ, where v = 246 GeV is the vev of the Higgs boson H. The dilaton operator
triggers the breaking of SU(2)L×U(1)Y gauge invarince through the dilaton mass operator. The
scales f and v are different except for H ( f = v). DP mixes with γ via the kinetic term ∼ ε Fµν Bµν

with ε being the mixing strength; Fµν and Bµν are the strength tensors of electromagnetic field Aµ

and the field Bµ of DP, respectively. The basic object is the Dalitz-like decay S→ γ γ̄ , where S
should either be H or the scalar dilaton.

We study DP which is within the reach of the LHC energy
√

s ∼ O(10 TeV ). Recently, DP
and the resonant monophoton signatures in Higgs boson decays have been studied at the LHC [2].
The ε is predicted in various models with the values in the range 10−12−10−2. In the low energy
experiments the values of ε in the window 10−7−10−3 have been probed (see the refs. in [3]). If
no excess events are found, the obtained results can be used to impose bounds on ε as a function of
DP mass. The production of S is due to gluon-gluon fusion followed by the (heavy) quarks in the
loop with final states γ and γ̄ . In SM, the violation of conformal symmetry is understood through
the non-vanishing divergence of Kµ

∂µKµ = θ
µ

µ =
β (g)
2g

Ga
µν Gµν a +∑

q
mq[1+ γm(g2)]q̄q,

where θ
µ

µ is the trace of the energy-momentum tensor, β (g) is the standard beta-function with the
coupling constant g, Ga

µν is the strength tensor of gluon field. The quark state q is accompanied by
the mass mq, and γm(g2) stands for the anomalous dimension of the mass operator q̄q.
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Because of the scale invariance, the operator relevant to γ̄ may carry the features of an unpar-
ticle stuff [4] with the scaling dimension dIR = 1+δ (δ < 1) in the infra-red (IR). In this case, the
energy spectrum ωγγ̄ = d Γ(S→ γγ̄)/dEγ of the photon (with energy Eγ ) has a continuous distribu-
tion spreading from zero to half of the dilaton mass mS/2. As δ → 0+ (from above), ωγγ̄ becomes
more peaked at mS/2. The γ̄ with δ = 0 is γ . Note that the unitarity constraint lower bound on
vector operator dimension dIR ≥ 3 [5] does not use here because the operator of γ̄ is neither gauge
invariant, no the primary one. The decay of γ̄ into SM particles is controlled by the relation between
the mass gap mγ̄ of γ̄ and the production threshold m1 +m2 with the masses mi (i = 1,2) of the
decay products. If mγ̄ > m1 +m2 there is enough phase space that γ̄ can decay into SM particles,
otherwise DP may be associated with DM as a stable object.

In this paper, DP is considered in the framework of the gauge dipole field model which exhibits
IR singularities. In Abelian Higgs model the breaking of the gauge symmetry implies the dipole
singularity of the type δ ′(p2) in two-point Wightman functions (TPWF), e.g., for the scalar or the
gauge fields, satisfying the equations of motion of 4th order (see the refs. in [6]). Other classes of
models exhibiting a δ ′(p2) singularity are the Conformal Field Theory (CFT) models [7].

2. Couplings and constraints

In CFT the ultraviolet (UV) coupling of an operator OUV of dimension dUV to a dilaton oper-
ator σ̄ at the UV scale M has the form

1
MdUV−2 |σ̄ |

2 OUV ,

which flows in the IR to coupling of the Higgs boson H to DP operator OIR of dimension dIR

const
ΛdUV−dIR

MdUV−2 |H|
2 OIR, Λ∼ O( f ),

when the scale invariance is almost breaking. Once H acquires v, theory becomes nonconformal
below the scale Λ̃ [8]

Λ̃ =

(
ΛdUV−dIR

MdUV−2 v2
) 1

4−dIR

,

where the hidden sector becomes the standard particle one. For a typical energy
√

s of a collider
experiment Λ̃ <

√
s < Λ the constraint on ε is

ε <
sd

(v2 Md−2)
2 ,

where d is the dimension of the SM operator and there are no the dependence on dUV , dIR and Λ.
The signals of new physics with DP are increasing with energy, and would be seen if the values
of M are not too large. If the deviation from the SM is detected at the level of order 3%, the DP
would be visible at the LHC as long as v < M < 1000 TeV. In the decay S→ γγ̄ the gauge invariant
operator structure is OSM OIR ∼ ε q̄γµ qSBµ M−1 and the relevant energy scale is the mass of the
heavy (top) quark q in the loop. Since the new effects beyond the SM is expected on the scale
M > v∼O(0.3 TeV ), we find ε < 3 ·10−2 (d = 4). If ε→ 0, the only decay H→ γγ is appropriate
within SM.
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The calculation of the electromagnetic neutrino formfactor (EMνF) [9], applied to the process
γ̄ → νν̄ , allows to estimate the DP mass m

m' mµ

[
3
√

2π ᾱ
−1

∑
l:e,µ

(
ln

Λ2
ν

m2
l
− 1

6

)−1
] 1

2

.

Here, ml is the mass of the charged lepton l in the loop, Λν is the cut off scale in the logarithmically
divergent integral of EMνF. Using Λν at the scale of the Z-boson mass, we obtain m = 0.83 GeV
for an electron and muon loops, and as the result one finds ε = 7.6 ·10−3.

3. Model

The Lagrangian density (LD) of the Higgs-dilaton Abelian gauge model is

L = Lε +Lσ −
1
2

m2 Bµ Bµ +LSI, (3.1)

where the field Bµ mixes with Aµ by

Lε =−
1
2

ε Fµν Bµν −ξ (∂µAµ)(∂νBν)+ q̄(i∂̂ −mq−gÂ)q− Iµ(Bµ −∂µσ), (3.2)

ξ = εξ̄ , ξ̄ is a real number, g is dimensioneless coupling constant, Fµν = ∂µAν − ∂νAµ , Bµν =

∂µBν − ∂νBµ and Iµ is an auxiliary vector field. The subcanonical scalar field σ(x) with zero
dimension in mass units is the primary dilaton field which provides a control over UV and IR
divergences. LD (3.2) is invariant under the restricted gauge transformations of the second kind

Aµ → Aµ +∂µα, Bµ → Bµ +∂µα, σ → σ +α, q → qeigα , Iµ → Iµ , (3.3)

where α(x) obeys the equation �α(x) = 0 (�≡ ∂µ ∂ µ ). The parametrization of the σ couplings to
quarks that are relevant for collider physics is

Lσ =−σ ∑
q′
(mq′+ xσ yq′ v)q′ q̄′,

where xσ = m2
σ/ f 2 < 1 parametrizes the size of deviations from exact scale invariance; mσ is the

mass of the dilaton; yq are 9 additional contributions to the Yukawa couplings. If SM is embedded
in the conformal sector, the following condition ia evident

∑
light

bi + ∑
heavy

bi = 0, (3.4)

where i carries either QCD or EW features of the coefficients bi of corresponding β -functions. The
sum in (3.4) is splitted over all colored particles into sums over light and heavy states in the mass
scale separated by mσ . The dilaton contribution to the decay S→ γ γ̄ corresponds to including the
states lighter than that of the dilaton in the β -function coefficients.

The scale invariant sector of the theory contains the fields H and σ̄ = f σ

LSI(x) =
1
2

[(
∂µH

)2
+
(
∂µ σ̄

)2
]
− λ

4
(
H2−β

2
σ̄

2)2− η

4
(
σ̄

2− f 2)2
.

3



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
3
6

Dark photons Gennady Kozlov

The conformal symmetry is breaking explicitly by the mass term ∼ √η f < f . If η = 0 we deal
with the dilaton having the flat direction. Within the equations of motion coming from (3.1), one
approaches the dipole equation for the Hermitian virtual dilaton field σ̄(x)

�2
σ̄(x) = 0, (3.5)

where �σ̄ = ( f/m2)[ξ�(∂ ·A)− (∂ · I)].
The TPWF for σ̄(x) has the form ω(x) = 〈Ω, σ̄(x) σ̄(0)Ω〉, where the vacuum vector Ω is

defined as σ̄ (−)(x)Ω = 0, 〈Ω,Ω〉= 1, where σ̄(x) is decomposed into negative-frequency (annihi-
lation) and positive-frequency (creation) parts: σ̄(x) = σ̄ (−)(x)+ σ̄ (+)(x), σ̄ (+)(x) = [σ̄ (−)(x)]+.
The function ω(x) should be Lorentz-invariant, and the equation �2ω(x) = 0 is evident. The gen-
eral solution is given by the following expansion [10]

ω(x) = b1 ln
l2

−x2
µ + iε x0 +b2

1
x2

µ − iε x0 +b3 (3.6)

which is the distribution on the space S′(ℜ4) of temperate generalized function on ℜ4. The coef-
ficients b1 and b2 in (3.6) will be defined later, while b3 is an arbitrary constant. The parameter
l in (3.6), having the dimension in units of length, breaks the scale invariance under dilatation
transformation.

The commutator for dilaton field is

[σ̄(x), σ̄(0)] = 2π i sign(x0)
[
b1 θ(x2)+b2 δ (x2)

]
,

where b1 and b2 can be fixed from the canonical commutation relations
[
Aµ(x),πAν

(0)
]
|x0=0 =

igµν δ 3(~x) and [σ̄(x),πσ̄ (0)]|x0=0 = iδ 3(~x), respectively. Here, πσ̄ (x) and πAµ
(x) are the conjugate

momenta of σ̄(x) and Aµ(x), respectively. In order to find b1 and b2, we choose Iµ in the form
Iµ = ε m2(∂µσ−Aµ) which is invariant under gauge transformations (3.3). Hence, we have the new
term in LD (3.1), namely −(1/2)ε Fµν Bµν + ε m2(Aµ − ∂µσ)(Bµ − ∂µσ) which is Stueckelberg-
like [11] LD, where the ε- mixing effect between vector fields Aµ and Bµ is included, and one of
the field, Bµ , has the mass m. The following equations of motion

�Aµ −a∂µ (∂A)+m2(Aµ − ε
−1 Bµ) = m2

∂µσ , a = 1− ξ̄ , (3.7)

(�+ m̃2)(∂B) = m̃2�σ , m̃2 = ξ̄
−1 m2 (3.8)

are important to find the solutions of the model considered here. The solution Bµ = ∂µσ obtained
for an arbitrary vector Iµ obeys Eq. (3.8) that leads to (3.5). The solution of Eq. (3.7) is explicitly
given in the form

Aµ =Cµ +
1
m

∂µϕ− ξ̄

m3 ∂µ�ϕ,

where ϕ = (1+ ε−1)mσ with (�+m2)Cµ = 0, ∂µCµ = 0 and [Cµ(x),ϕ(y)] = 0. One can eas-
ily find the equation of motion for dilaton field: �σ ' ε(ξ̄�/m2 + 1)(∂ ·A), and the conformal
symmetry is restored (free massless dilaton field) if the (γ̄− γ) mixing does disappear (ε = 0).

The propagator of the dilaton field σ̄(x) is

τ(x) = 〈Ω,T [σ̄(x)σ̄(0)]Ω〉=−b1
[
ln |κ2x2|+ iπθ(x2)

]
+b2

[
1
x2 + iπδ (x2)

]
,
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where

b1 =
1

(2π)2
f 2

ξ̄ (1+ ε)
, b2 =

−1
2π2 (1−m2/ f 2)

, κ ∼ l−1.

The propagator of Bµ field (DP) in four-momentum space is τ̃µν(p) = pµ pν τ̃(p), where
τ̃(p)∼ [τ̃1(p)+ τ̃2(p)], with

τ̃1(p) =
1

ξ̄ (1+ ε)
lim

ι2→0

[
1

(p2− ι2 + iε)2 + iπ
2 ln(l2

ι
2)δ4(p)

]
,

τ̃2(p) =
−1

2( f 2−m2)(p2 + iε)
,

where the "strong gauge condition" ∂µσ(x) = Bµ(x) was used. In case of no mixing between the
real photon and DP, τ̃µν(p) comes to the standard photon propagator.

4. Conclusions

The gauge and scale invariant model for DP solvable in 4-dimensional space-time is studied,
where the DP field is massive. The interaction between DP and quarks is mediated by the diver-
gence of the dilaton. The latter is a portal to the propagator of DP τ̃µν(p) obeying the equation of
motion �(∂ ·B) = 0. We estimated the upper limit for the mixing strength ε < 3 ·10−2 in S→ γγ̄ ,
where the main contribution is due to top-quark in the loop. This can be interpreted as the limit of
the branching ratio BR(S→ γ γ̄) which is just the rate of the two-photon decay of the Higgs boson
in the SM as ε = 0. We find that the DP mass m is restricted by 3.3 GeV from above, and the results
with EMνF calculations gives m = 0.83 GeV and ε = 7.6 ·10−3. The decay mode S→ γ γ̄ can be
used at the LHC to probe the DP sector since the emitted energy of the single photon is encoded
with measuring of the missing of the recoil DP.
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