
P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
8

Managing Asynchronous Data in ATLAS's 
Concurrent Framework

C. Leggett1 2, J. Baines3 , T. Bold4 , P. Calafiura2 , J. Cranshaw5 , A. Dotti6 , S. 
Farrell2, P. van Gemmeren5 , D. Malon5 , G. Stewart7 , S. Snyder8 , V. Tsulaia2 , B. 
Wynne8 on behalf of the ATLAS Collaboration

2Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley CA 94720, USA
3STFC Rutherford Appleton Laboratyr, Harwell Oxford, Oxfordshire, UK
4AGH University of Science and Technology, Krakow, Poland
5SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
6Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
7SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, UK
8SUPA – School of Physics and Astronomy, University of Edinburgn, Edinburgh, UK

E-mail: cgleggett@lbl.gov

In order to be able to make effective use of emerging hardware, where the amount of memory
available to any CPU is rapidly decreasing as the core count continues to rise, ATLAS has begun
a migration to a concurrent, multi-threaded software framework, known as AthenaMT.

Significant progress has been made in implementing AthenaMT - we can currently run realistic
Geant4 simulations on massively concurrent machines. The migration of realistic prototypes of
reconstruction  workflows  is  more  difficult,  given  the  large  amount  of  legacy  code and  the
complexity and challenges of reconstruction software. These types of workflows, however, are
the  types  that  will  most  benefit  from  the  memory  reduction  features  of  a  multi-threaded
framework. 

One of the challenges that we will report on in this paper is the re-design and implementation of
several key asynchronous technologies whose behaviour is radically different in a concurrent
environment than in a serial one, namely the management of Conditions data and the Detector
Description,  and  the  handling  of  asynchronous  notifications  (such  as  FileOpen).  Since
asynchronous data, such as Conditions or detector alignments, has a lifetime different than that
of event data, it cannot be kept in the Event Store. However, multiple instances of the data need
to be simultaneously accessible, such that concurrent events that are, for example, processing
conditions data from different validity intervals can be executed concurrently in an efficient
manner with low memory overhead, and without multi-threaded conflicts.

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

1Speaker

  Copyright owned by the author(s) under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
8

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

1. Introduction

ATLAS's  [1] framework (Athena[2]) was designed to serially process one event at a time.
Limitations of existing and emerging computing technology, as well as the requirements of the
ATLAS  reconstruction  environment,  have  forced  us  to  examine  concurrent,  multi-threaded
implementations[3].  ATLAS  has  begun  the  process  of  migrating  its  software  to  the  new
framework (AthenaMT),  focusing this year on making its core Services thread safe and able to
process multiple concurrent events.

One of the challenges in this migration process has been the handling of Asynchronous
Data, i.e. data which can have a lifetime of more than one event. The period of time for which
any piece of such data is valid is referred to as an Interval of Validity (IOV). While we do have a
solution  for  managing  multiple  concurrent  Event  Stores  belonging  to  different  events,
Asynchronous data cannot be stored there, as the contents of the Event Store are erased at the
end of each event, so a different solution must be found. 

We can loosely classify Asynchronous Data into two, somewhat interrelated, categories:
Conditions, such as high voltages, calibrations,  etc., and Detector Geometry and Alignments.
Closely related to these are Asynchronous Callbacks (Incidents), which are functions that need
to be executed at non-predetermined intervals, such as in response to the opening of a file, or the
signaling of the beginning of a new run.

2. Conditions

In serial Athena, Conditions were managed by the Interval of Validity Service (IOVSvc).
At the start of a job, the IOVSvc is configured to manage a number of objects in an assiociated
Conditions Database, which stores the value of each object for each IOV. At the start of each
event, the IOVSvc examines the validity of each registered object. Objects that are no longer
valid are re-read from the database, and any required post-processing of the data is performed
by an associated callback function. The processed objects are then placed in a conditions store,
from whence they can be retrieved by a user Algorithm.

This workflow fails when multiple events are processed concurrently. Since only a single
instance of the conditions data can be held at any one time in the conditions store, if two events
are  processed  concurrently,  with  associated  conditions  data  from  different  IOVs,  one  will
overwrite the other. Furthermore, neither the IOVSvc itself nor any of the conditions callback
functions  were  designed  to  be  thread  safe,  and  since  these  are  shared  instances,  threading
problems are bound to occur. A major rewrite of the entire infrastructure is required. 

Several  different  designs  for  the  condition  handling  were  examined,  with  two  key
requirements in mind: minimize changes to client code (as there is so much of it), and minimize
memory usage (as an overall memory shortage is one of the main reasons we need to use a
multi-threaded framework).

2.1 Processing Barrier

The first considered design was to use a processing barrier, such that only events where all
Conditions  objects  were  unchanged were  processed  concurrently. No new events  would  be

2



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
8

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

scheduled until all events within the same Conditions region had finished processing. Then the
conditions  store  would  be updated  using the  IOVSvc machinery, and  new events  could be
scheduled. By utilizing this technique, very few changes would need to be made to the client
code, and there is no extra memory usage, as there is only one instance of the conditions store.
The majority of the work would be in making the scheduler aware of the Conditions boundaries,
and doing the appropriate filling and draining of associated events. The fundamental problem
with this method, however, is that it assumes that Conditions boundaries are infrequent, so that
the loss of concurrency when the scheduler is drained and refilled is  minimal.  On ATLAS,
however, Conditions changes can sometimes occur very rapidly, for example as frequently as
once  per  event  in  the  Muon  subsystem.  This  would  have  the  effect  of  serializing  event
processing, with complete loss of concurrency. Another problem is that it assumes that all events
are  processed in sequence.  If  events are out  of  order  near a Conditions  boundary, then the
processing barrier could be triggered multiple times, once again resulting in a significant loss of
concurrency.  

2.2 Multiple Conditions Stores

Another proposed design was to use multiple conditions stores, one per concurrent event,
in  the  same  manner  as  the  Event  Stores  are  duplicated  for  each  concurrent  event.  The
mechanism by which data is retrieved from the conditions store would be modified, such that
clients would associate with the correct Store. Impact on client code would be small – only the
conditions data retrieval syntax would need to be updated. However, beyond merely ensuring
thread safety of the IOVSvc and the callback functions, there are two significant problems with
this design: the memory usage would balloon, as objects would be duplicated between each
Store instance; and also the execution of the callback functions that are used to process data
would be duplicated, resulting in extra CPU overhead.

2.3 Multi-Cache Conditions Store

The chosen solution is to implement an intersection of  the two preceeding designs, with a
single conditions store that holds containers of condition data objects, where the elements in
each  container  correspond  to  individual  IOVs.  Clients  access  Condition  objects  via  smart
references, called ConditionHandles, which implements the logic to determine which element in
any ConditionContainer  is appropriate for a given event. The callback functions are migrated to
fully-  fledged  Condition  Algorithms,  which  are  managed  by  the  framework  like  any  other
Algorithm, but only executed on demand when the Conditions objects they create need to be
updated.

One of the fundamental changes in the client code needed for the migration to AthenaMT
is  that  all  access  to  event  data  must  be  done  via  smart  references,  called  DataHandles.
DataHandles are declared as member variables of Algorithms, and provide two fundamental
functions: to perform the recording and retrieval of event data, and to automatically declare the
data dependencies of the Algorithms to the framework, so that the Algorithms can be executed
by the Scheduler as the data becomes available. We capitalized on the migration to DataHandles
by requiring that all access to Conditions data be done via related ConditionHandles. By using
ConditionHandles  in  the  Condition  Algorithms  to  write  data  to  the  conditions  store,  the

3



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
8

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

framework  solves  the  problem  of  Algorithm  ordering  for  us,  ensuring  that  the  Condition
Algorithm is executed, and the updated Condition objects are written to the Store before any
downstream Algorithm which needs to use them are executed.

When a ConditionHandle is initialized, it will look in the conditions store for its associated
container, identified by a unique key. This container holds a set of objects of the same type and
their associated IOVs. Upon dereferencing, the ConditionHandle will use the current event and
run numbers to look inside this container, and determine what action needs to be taken. At the
start of the event, the Condition Service analyzes the subset of the objects held in the condtion
store that have been registered with it at the start of the job by the Condition Algorithms, and
determines which are valid or invalid for the current event. If an object is found to be invalid,
the Condition Algorithm that produces that object will be scheduled. If an object is found to be
valid, then the Scheduler will be informed that this object is present, and placed in the registry
of existing objects. In this case the Condition Algorithm will not execute.

When a  Condition  Algorithm is  executed,  it  queries  the  Conditions  Database for  data
corresponding to the current event, as well as its associated IOV, creates the new object for
which it is responsible, and adds a new entry in the ConditionContainer that is associated with a
ConditionHandle  (see  Ill.  1).  When  a  downstream  Algorithm  that  needs  to  read  a
ConditionHandle  from  the  store  is  executed,  the  data  is  guaranteed  to  be  present.  The
ConditionHandle uses the current event number to identify which element in the container is the
appropriate one, and returns its value.

By using basic features of the new framework, namely the use of  ConditionHandles and
data  flow  dependencies  to  automatically  schedule  Algorithms  as  needed,  we  are  able  to
minimize changes to client code, and let the framework do the majority of the heavy lifting. The
use of  collections of Condition Objects inside of a single ConditionStore allows us to minimize
the total memory footprint.

3. Detector Geometry and Alignments

The detector geometry model used in ATLAS (GeoModel), is a hierarchical tree that is
built from several components (see Ill. 2): a Physical Volume (PV) which are the basic building
blocks; a Transform (TF) that is fixed at construction; and an Alignable Transform (ATF), which
accounts for the movement of the detector component as a function of time, reading Deltas (D)
from a database. When a client requests the position of a Detector Element, the Full Physical
Volume (FPV) is assembled, and the position is cached (C).  As the detector alignment changes,

4

Illustration 2: Detector Geometry 
Alignments

Illustration 1: ConditionHandles



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
8

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

new deltas are read in by the ATF, and the cache held by the FPV is invalidated,  until  the
position of the element is again requested, recomputed, and cached.

 When  multiple concurrent events are processed, this design will fail, as there is only a
single shared instance of the GeoModel tree, and the ATF and FPV can only keep track of single
delta or cache at any one time. We can solve this problem in the same way as for the conditions.
The time dependent information (i.e. the deltas and cache) held by the GeoModel is decoupled
from the static entries, and held in a new AlignmentObject located inside the ConditionStore.
The ATF and FPV use ConditionHandles to access this data, and they are updated by a new
GeoAlignAlg which is scheduled on demand by the framework. Clients of the DetectorElements
are entirely blind to this change, and the only code that needs to be modified are base classes
inside the GeoModel structure.

4. Asynchronous Incidents

ATLAS uses the Incident  Service to execute callback functions at  certain well-defined
times  following  the  well-established  observer  patterns.  Clients  register  interest  in  certain
"Incidents"  with  the  service,  such  as  BeginEvent,  FileOpen,  or  EndMetaData.  When
components fire these Incidents, execution flow is passed to the IncidentSvc, which triggers the
appropriate callback function in the registered observers. There are many issues with this design
in AthenaMT, where there can be multiple instances of any Algorithm, executing simultaneously
in different events. If a cloned Algorithm is an Incident observer, should all instances execute
the callback? What if an instance is currently executing in a different thread? Fixing the design
in a generic way looked to be an impossible task.

Instead, we did a study of exactly how Incidents were being fired and used, and discovered
that  the  vast  majority  were  fired  outside  the  event  execution  loop  (ie before  or  after  all
Algorithms are executed for one event), and being used to signal discrete state changes, such as
BeginEvent. We realized that we could significantly limit the scope of the IncidentSvc without
losing any functionality. Incidents instead became schedulable, where the IncidentSvc would
add special IncidentAlgs at the beginning or end of the event processing loop, which would
interact with event context aware Services to perform the same function as the old Incident
callback functions. Clients would then interact with these Services, passing them the current
event to extract the relevant information.

 

5. Conclusions

For ATLAS, managing Asynchronous data in a concurrent  environment has required a
paradigm shift. No solution is fully transparent or plug and play, unless we choose to sacrifice
concurrency and performance, or increase memory usage. Dealing with multiple threads as well
as multiple concurrent events increases the complexity of the problem.

In spite of these difficulties,  we have been able to minimize impact on client code via
strategic  modifications  at  the  framework  and  Service  level,  leveraging  core  features  of
AthenaMT such as  DataHandles  and the Scheduler  itself.  In  some cases,  we have found it
necessary to reduce the complexity of Services to fit their actual uses,  resulting in simpler
designs with no loss of performance or functionality. 

5



P
o
S
(
I
C
H
E
P
2
0
1
6
)
1
8
8

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

New versions  of  all  three  aspects  of  the  Asynchronous  data  and  event  infrastructure
discussed in this paper have been implemented, and migration of client code is ongoing. We
anticipate full operation of these services by the end of 2016.

References

[1] ATLAS Collaboration,  The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003

[2] P. Calafiura, W. Lavrijsen, C. Leggett, M. Marino, D. Quarrie,  The Athena control framework in production, 
new developments and lessons learned, CHEP 2004 Conf. Proc. C04-09-27 (2005) pp 456-458

[3] P. Calafiura, W. Lampl, C. Leggett, D. Malon, G. Stewart, B. Wynne,  Development of a Next Generation 
Concurrent Framework for the ATLAS Experiment, J. Phys. Conf. Ser. 664 (2015) no.7, 072031

6


