PoS - Proceedings of Science
Volume 282 - 38th International Conference on High Energy Physics (ICHEP2016) - Dark Matter Detection
ADMX Status
I. Stern* On behalf of the ADMX experiment
*corresponding author
Full text: pdf
Pre-published on: February 06, 2017
Published on: April 19, 2017
Abstract
Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter (CDM) in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of CDM axions between approximately μeV and meV. The Axion Dark Matter eXperim8ent (ADMX) is a direct-detection CDM axion search which has set limits at the KSVZ coupling of the axion to two photons for axion masses between 1.9 and 3.7 μeV. The current upgrades will allow ADMX to detect axions with even the most pessimistic couplings in this mass range. In order to expand the mass reach of the detector, extensive research and development of microwave cavity technologies, tunable microwave SQUID amplifiers, and piezoelectric drives is being conducted. ADMX is projected to explore more than one decade of the allowable mass range with DFSZ coupling sensitivity in the near future. Status of the experiment, current research and development, and projected results are discussed.
DOI: https://doi.org/10.22323/1.282.0198
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.