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The LUX collaboration new results advance the search for dark matter candidate particles in the 4
GeV /c* and higher mass range, with a maximal spin-independent 90% CL limit of 2 x 10~*0¢m?
at 50 GeV /c? for its 332 live-day run, following after 6 x 10~%¢m? cross-section for 33 GeV /c?
mass from the re-analysis of its initial 95 live-day WIMP search data from December 2015. LUX
has performed multiple advanced in sifu neutron and beta/gamma calibrations of light and charge
yields down to 1.1 and 0.7 keV, respectively, in nuclear recoil energy and 1.3 and 0.2 keV in units
of electron recoil energy, thereby bypassing the past practice of extrapolating yields from ex situ
calibrations or simulation models alone. For this conference proceeding, consequences of the
new calibrations for the limit on the interaction cross-sections for low-mass WIMPs will be high-
lighted. Previous claims of a WIMP signal, from other detectors, are now even more strongly dis-
favored, assuming isospin invariance and the standard WIMP halo model. Both spin-independent
and spin-dependent limits will be discussed, including the recent completion of LUX’s 332-live-
day blind run. Lastly, we highlight the conceptual design and future plan for its 10-ton-scale,
next-generation successor LZ, which plans on achieving < 3 x 10~*¢m? sensitivity for a WIMP
of mass 40 GeV /c?.
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1. Introduction

Over 80% of the matter in the universe, or approximately 25% of its total mass-energy con-
tent, continues to elude humanity’s scientific community [1]. The two-phase xenon Time Projection
Chamber (TPC) has been the world-leading technology over the past few years in the direct search
for the WIMP (Weakly Interacting Massive Particle), a leading candidate particle for explaining
dark matter [2]. Most recently, this type of device has been exemplified by the LUX (Large Under-
ground Xenon) experiment [3], including its first result from October 2013 [4], and its re-analysis
of it from the end of 2015 [5]. LUX was deployed at Sanford Underground Research Facility
(SURF), 4850 ft. below the surface of Lead, SD (4300 mwe). LUX was placed in the Raymond
Davis Cavern, once home to the Nobel-prize-winning Homestake Experiment which detected solar
neutrinos [6]. We will discuss here the details of the internal electric field after the field-generating
grid ’conditioning’ campaign, and its 332-live-day WIMP search run thereafter [7], of which 300
live-days were ’salted’ as a form of blinding, with simulated nuclear recoil (NR) events included
in the data stream. We will cover the resulting latest LUX sensitivity to the WIMP-nucleon spin-
independent (SI) cross-section, the spin-dependent (SD) sensitivities for both neutrons and protons
from the first, shorter run [8], and preliminary limits for axions and ALPs (axion-like particles) [9].
Lastly, we will conclude with the future of LUX, and LZ, its multi-ton-scale successor continuing
the WIMP quest for a new generation.

In a two-phase Xe TPC, an incoming particle produces scintillation light (S1) in the liquid at
175 nm, which is detected on 10-100 ns timescales by top and bottom arrays of Photomultiplier
Tubes (PMTs). The particle will have also ionized atoms. The liberated electrons are drifted
upward in an electric field to a gas stage, where they produce their own, O(1 ws)-wide, scintillation
(S2), up to ~300 us after S1. The time in between the S1 and S2 determines the depth of an event
in the detector, while the S2 hit pattern in the top PMT array allows reconstruction of the other two
dimensions of the event’s position. The PMTs convert individual photons into photo-electrons (phe
or PE) via the photo-electric effect [10].

Photons detected (phd) is a new unit, created by LUX, that compensates for the ~20% chance
that a single photon produces 2 phe in one of the R8778 Hamamatsu PMTs [11]. LUX additionally
uses the digital photon counting method called ’spike counting’, at low energy, in order to achieve
a better resolution of the S1 signal. This allows for a more precise determination of the integer
number of photons initially reaching the PMTs. The internal structure of the LUX detector specif-
ically contains a ~50 x 50 cm dodecagonal cylinder of PTFE (trade name of Teflon), nearly 100%
reflective at the vacuum ultraviolet (VUV) wavelength of xenon scintillation [12]. The approxi-
mate 1:1 ratio of the detector is intended to ensure background radiation does not have a preferred
direction for entry into the fiducial volume. LUX contained 370 kg of Xe total, with 250 kg ac-
tive, here defined as enclosed within the upward drift field. The fiducial mass varied from 118 kg
(2013 initial analysis) to 145 kg (2015) to ~100 kg (time- and space-dependent) for the ~1-year
data-set. These values depended on the wall background rejection ability. The active volume was
instrumented with 122 low-background, VU V-sensitive PMTs, 61 top and bottom. The Xe was pre-
purified to remove Kr-85 and other impurities as well as re-circulated during operations, through a
commercial hot gas getter, to continuously maintain a high level of purity, for the effective drifting
of electrons and transport of photons, and was housed in a low-background titanium cryostat [13].
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The energy threshold for NR, that is, the 50%-efficient point on a sigmoid-like efficiency curve
caused by finite energy resolution smearing S1 and S2, was between 3 and 4 keV for the different
analyses and runs. This refers to detection of NR prior to the application of electron recoil (ER)
background discrimination. In the re-analysis of 2013 data, LUX determined a 0.20% average ER
leakage figure (that is, 99.80% discrimination) for the WIMP search S1 range of 2 to 50 phd, below
the NR log;((S2/S1) band per-S1-bin Gaussian centroid. However, this was only a figure of merit
since a Profile Likelihood Ratio (PLR) method was used for the limit calculations.

2. Calibrations

For both the initial 95 live-day unblinded run and second 332 live-day run, extensive calibra-
tions of LUX were conducted. For NR, this was accomplished with a DD (Deuterium-Deuterium
fusion) 2.45 MeV neutron generator source [14]. The neutrons were “collimated” by means of an
air-filled PVC tube that could be raised into place during calibration, inside of the muon veto water
shield. The resulting NR was in the energy range of 0.7-74 keV, making this the most exhaustive
calibration of its kind. Through the summing of S1 and S2 per unit energy, excellent agreement
was achieved with the Lindhard model, to a degree that for Xe is now comparable to Ge and Si,
confirming the hypothesis put forth by Sorensen and Dahl using older data [15]. For ER, the cal-
ibration was accomplished with a tritiated methane source (CH3T), which could be injected into
the Xe, then purified back out with a getter [16]. The resulting ER could be detected in the energy
range of 1.3-18.6 keV successfully. This internal calibration avoided reliance on external gamma
sources, which find it difficult to penetrate into the fiducial volume of a large-scale TPC LUX-sized
[17]. The use of a beta source additionally allowed for a comparison of gamma and beta behavior
in Xe at low energies. The primarily Compton background from gamma rays was consistent in S2
and S1 yields with beta data vs. energy [16]. When accounting for the resolution of reconstructed
energies combining S1 and S2, the beta spectrum could be reconstructed, and a fall-off from thresh-
old at low energy reproduced in simulation [18]. Fig. 1 shows the source delivery systems for both
calibrations.

Figure 1: Left: The DD neutron “gun” [38] be-
hind poly shielding. It resided immediately next
to the water tank, and emitted n’s into 4w, with
neutrons directed using a pipe inside to main-
tain beam purity, in terms of original energy.
Right: Delivery system into the Xe stream for
the methane, where one ordinary hydrogen atom
was replaced with tritium. Info on data from
these sources is within [14,16].

3. Understanding the New Data

The drift electric field was 180 V/cm and extraction field was 6 kV/cm during the first science
run. Both fields were successfully raised for the subsequent run, after a period of “conditioning.”
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This was motivated by expected higher ER discrimination at higher electric fields [19], though
S1 photon detection efficiency turned out to be more important [20]. It was also motivated by a
desire to lower the S2 threshold, with an improved extraction of electrons into the gas amplification
region, which increased from 48.9% to over 70%. However, the drift field became distorted, both
in magnitude, between 50 and 600 V/cm, and in direction, with radial components distorting the
position reconstruction and thus the determination of the fiducial volume boundary. The fields
continued to change over the course of the run. These issues were addressed by splitting up the
data from the 332 live-day run into 16 bins, in time, based on the dates of events, and in space, using
the drift time as the standard indicator of event depth. There were 4 slices in time of occurrence and
4 in space (in depth, known as “Z-slices”), to make up these 16 independent detectors essentially,
each with its own electric field and own S1 and S2 efficiencies. The number of (equally-sized)
spatial slices were chosen so that the ER and NR band Gaussian means as a function of S1 would
not vary significantly within their uncertainties inside of them; the time slices, which were unequal,
and spanned 2014 to 2016, were chosen based on when the slow drift over time of the reconstructed
radius to the wall exceeded the error on it, due to the time-varying field. The fiducial mass for
each time/space bin varied between 98-105 kg, chosen to minimize backgrounds from the wall.
The NEST (Noble Element Simulation Technique) ever-updating, semi-empirical umbrella of light
and charge yield models [21] was utilized to construct a series of Monte Carlo simulations, for
NR and for ER, for each of the 16 segments. The formulae and results presented in [22] and
[23] respectively for ER and NR were updated with slightly modified, newer values, based on the
tritium and DD calibrations of the first LUX WIMP search, providing the energy dependence of
the ionization and light yields. The field dependencies of these yields were provided by studying
PandaX small-scale chamber calibration data [24]. The same LUX calibrations were continued and
repeated for the second science run, but were not treated as input into simulation. The simulation
assumed yields from the existing NEST version were correct, adjusting S1 and S2 efficiencies to
compensate, and allowing the mean field to float as a free parameter, comparing it to independent
measurements of field. The result was that the best-fit electric fields from NEST agreed within
uncertainty, statistical as well as the systematic from radial variation in field, with the COMSOL
modeling of the time- and space-varying field. This established the reliability of simulation in
terms of its service as a basis for PLR signal and background models (Fig. 2).

Figure 2: The time bins and Z-slices of the
LUX detector for its second, longer run, when
the electric drift field became distorted. The gray
densities represent the CH3T calibrations (ER)
and the orange densities are the DD calibrations
(NR). The solid lines are the NEST model band
means, tuned, while the dashes are 10-90 per-
centiles. Not every bin or slice has both cali-
bration types with good statistics, but the good
e agreement between NEST and data allowed in-
— menns 1B muni!  terpolation. Top row represents top of the detec-

ime Bin 2
Zsliced §f,¢

TR Rl 7 tor. Left to right is 9/2014 through 5/2016.
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Prior to un-salting and application of a 2-sided, un-binned PLR, the background model was
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verified through comparison with data. The upper half of the ER band was used a side band, the
lower half having been contaminated on purpose with fake WIMP signals. Comparison of the
background data was done in the five-dimensional space of the PLR: event radius, angle, drift time,
S1, and log(S2), the first three defining position and latter two energy. Figure 3 shows simulation
and data for each of the five. The KS test p-values in each dimension far exceeded 10% typically,
equal or greater than the previous run’s well-fitting background model [25]. The number of events
observed below the NR band Gaussian average was compared to the expected numbers during
un-salting, broken down by category in Table 1.
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4. Dark Matter Search Results

Traditional blinding masks the signal region, the NR band, completely, and more, the lower
half of the ER band as well, in order to account for statistical fluctuations upward. The challenge
often seen in the direct detection community is the side effect of blindness to rare backgrounds
and pathologies [26]. One may not need to go to such great lengths to mitigate the potential bias.
Instead of traditional blinding, LUX employs a technique where fake signal events, called “salt”
are injected into the data stream. Salt uses simulation only to ensure a proper S2/S1 ratio, drawing
from several differential exponentials and a uniform-in-energy distribution as well, not representing
any particular WIMP mass. Real data from calibration (tritium, which was higher-statistics than
DD, which needed to be kept for the critical NR calibration) are used for the pulse selection and
pairing. Salt mitigates bias while allowing for scrutiny of individual events and has been already
used to great effect in neutrino experiments and searches for free particles with fractional charge
[27]. The salting was performed successfully, with the fake events being all removed at the end, but
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prior to the limit calculation events outside of the ER band were re-scrutinized. Two populations
of rare, pathological events were identified, but only after the “desalination” process, contributing
3 events below the NR band mean. In a likelihood analysis, events such as these which match no
background distribution pose more of a worry than they would in a cut and count analysis where
they may be absorbed as a statistical fluctuation. It was discovered that S1 quality cuts had simply
been lacking, since single electron backgrounds had made the focus be the S2 quality cuts. Post
unblinding cuts were thus created, targeting gas S1 events and Cerenkov-like events (light mostly
in 1 PMT), both clearly not WIMP-like. These cuts were soft, independent of energy and high in
signal acceptance (NR), and defined using only the large calibration data sets, not tuned specifically
to the 3 events in WIMP search.

The p-value for the background-only model was 40%, after the removal of the salt events, plus
the cuts removing the small subset of events strongly discrepant with the vast majority of calibration
events based on different S1 aspects. The resulting WIMP-nucleon SI exclusion (90% C.L.) versus
mass can be seen in Fig. 4, with the best, lowest exclusion at 50 GeV, of 2.2 x 10™*¢m? or 0.22
zeptobarns (zb) in cross-section. This is within 1 order of magnitude of the XENONI1T projection
[28], and within 2 of LZ [29]. Fig. 4 also includes the LUX re-analysis (2015) of the 2013 data
(labeled LUX 2015). The new exclusion curve is comparable to the LUX 2015 re-analysis of 3
months’ worth of data at low mass, despite nearly 3.5x more live-time, due to an upward statistical
fluctuation in the number of background events at the lowest energies (still well within 1-2 sigma).
This re-analysis however, was over 2-3 orders of magnitude better at low WIMP masses compared
to the initial LUX 2014 curve, which itself was already in conflict with the results from DAMA [30]
and CoGeNT [31]. That improvement was driven by the new DD calibrations, which demonstrated
NR light and charge yields below 3 keV (down to sub-keV), where a conservative cut-off had been
set, assuming no yield below it. At high mass the limit is 4x better, slightly better than one would
assume from increase in exposure, due to a favorable, downward fluctuation, at the highest energies
of the WIMP search data (1-sigma below expectation). The 332 live days of data best the 95 live-
day result minimum cross-section in the limit of 0.60 zb at 33 GeV (Fig 4., which also contains
projections for 1,000 live-days of LZ running, default planned, starting in 2020 [29]).

The SD results appear in [8], which used only the initial 95 live-day data. These results will be
updated in the near future to include the data from the 332 live-day exposure. Xe remains the best
element to use for SD-neutron coupling. Preliminary results from LUX for both solar and galactic
axions/ALPs in terms of coupling to electrons can be found in [9], using only the first 95 live days,
with exclusion slightly better than that from XENON100, a similar detector [32].

5. LZ and Conclusion

The LUX-ZEPLIN (LZ) collaboration is a merger of the two former Xe TPC competitors, a
larger as well as improved version compared to either LUX or ZEPLIN chosen by the DOE G2
down-select. LZ has passed its CD-1 (Critical Decision) and CD-2 reviews successfully and is
only awaiting final CD-3 approval in 2017. Construction on certain detector elements has been
underway since 2015, and all elements will commence construction in early 2017. LZ will use
existing SURF infrastructure from the decommissioned LUX, especially the water tank. The total
mass of xenon will be 10 tonnes , with 7 active and ~5.6 in the fiducial volume. LZ will posses a
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unique triple veto system, composed of a PMT-instrumented (S1 only) Xe skin primarily serving as
active gamma shielding, a Gd-loaded liquid scintillator for neutron tagging, and a Cerenkov muon
veto for cosmic rays. Inclusion of these vetos increases the fiducial mass estimate from an original
~3 tonnes: Xe used previously only for self-shielding of backgrounds is now ’recovered’. These
vetos also increase confidence for discovery. The conservative baseline requirements of LZ include
a 6 keVnr threshold, with at least 99.5% discrimination (LUX and ZEPLIN have both already
demonstrated better for each). Many Higgs-mediated models will be probed by LZ, including a
favored 1 TeV Higgsino [35].

In summary, world-leading results, from LUX’s 332 and 95 live-day searches for dark matter
have cut significantly deeper into previously un-probed parameter space. The latest, final run has
an exposure of 33,500 kg-days, the most of any 2-phase Xe TPC to date. PandaX is close, with
a much larger mass but less live-time [36], so it will likely exceed this exposure soon, followed
by the even larger XENONIT [28]. More publications will be forthcoming soon, including the
combination of the results from the two runs into one, combined LUX exclusion plot [7]. Again
at SURF, LZ will deploy a multi-ton-scale detector as one of only 3 (2 for WIMPs, 1 for axions)
down-selected G2 experiments, and come within 1 order of magnitude of the coherent scattering
neutrino floor at high mass, “clipping” the neutrino “shoulder” at low [37]. For a 40 GeV WIMP
just outside the constraints of the current limits, it is anticipated to see 3¢ evidence. LZ should
have the best detector with hope for a WIMP discovery soon.
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