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DarkSide-50: status of the detector and results
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DarkSide-50 is a direct dark matter search experiment operating underground at Laboratori
Nazionali del Gran Sasso. It is based on a Time Projection Chamber (TPC) that contains 50 kg
of liquid argon; the TPC cryostat sits inside an active neutron veto based on a boron-loaded or-
ganic scintillator, which is in turn installed inside a water Cherenkov muon veto. The experiment
started acquiring data in Nov 2013 filled with atmospheric argon. In April 2015 it commissioned
the low-radioactivity argon from underground sources and has been running in a stable manner
since then. We report the current status of the detector and the latest results, including the mea-
surement of the radioactivity of the underground argon and the most sensitive dark matter search
performed with an argon target.

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

∗Speaker.
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1. Introduction

The DarkSide program goal is to detect signals of dark matter (DM) particles, by using liquid
argon (LAr) as a target in a dual-phase Time Projection Chamber (TPC) with active background
suppression systems. In order to achieve the goal, various technologies are adopted to reduce and
reject background events.

The main motivation to use LAr is its strong pulse shape discrimination (PSD) of electron
recoils (ERs) from nuclear recoils (NRs). Considering that the dominant mechanism to detect an
interaction between heavy DM (>10GeV/c2) and baryonic matter is expected to be elastic scattering
off nuclei, PSD in LAr provides a tool to reject the dominant background of ERs. The results from
DarkSide-50 with atmospheric argon (AAr) data show that using PSD, a total of 1.5×107 ER events
can be completely rejected in the DM energy region of interest (ROI), leaving no events after an
exposure of (1422±67)kg day [1]. The use of a dual-phase TPC allows 3D position reconstruction
which can be used to remove surface background events by fiducializing the detection volume.
Furthermore, the ratio of ionization yield to scintillation yield can provide additional discrimination
power against ER backgrounds. A challenge of employing LAr as a target for DM detection comes
from the presence of the β -emitting isotope 39Ar in AAr at the level of 1 Bq/kg. Since 39Ar has a
decay half-life of 269 years and is mainly generated by cosmic rays in the atmosphere, underground
argon sources can be free of 39Ar or have only trace amounts activated by radiation from the rock.

2. DarkSide-50 Detectors

DarkSide-50 consists of three nested detectors: the dual-phase argon TPC, with a LAr target
for DM detection; the organic Liquid Scintillator Veto (LSV) provides rejection of cosmogenic and
radiogenic neutrons, and γs from the detector materials and the Water Cherenkov Detector (WCD),
which rejects cosmic muons and suppresses radiogenic background from surrounding rocks and
detectors. An incoming DM particle which scatters from an Ar nucleus would result in excitation
and ionization of the argon. The excited Ar dimers de-excite and emit a first scintillation signal, S1,
at the vertex of the recoil. The ionization electrons which escape recombination are drifted toward
the top of the TPC by an electric field of 200 V/cm and are extracted into a gas phase layer, where
a higher electric field generates the second scintillation light, S2, by gas proportional scintillation.
All the inner surfaces of the TPC are coated with TPB to convert the 128 nm argon scintillation
light into the visible range. The scintillation photons are detected with two arrays of 19 PMTs on
the top and bottom of the TPC. The time difference between S1 and S2 gives the depth (z position)
of the event, and the transverse (x,y) position is reconstructed from the distribution pattern of S2
light among the top PMTs. The LSV has an array of 110 8” PMTs attached on the inside of
a 4 m diameter stainless steel sphere filled with liquid scintillator. The scintillator is a mixture of
pseudocumene (PC) and trimethyl borate (TMB) with a wavelength shifter, diphenyloxazole (PPO).
Neutrons are detected in the LSV via elastic scattering signals and/or capture signals, mainly on
10B in the TMB. The veto efficiency of NRs from capture signals has been studied and estimated
to be >99.1% using an AmBe neutron source and MC simulation [2]. The WCD has an array of 80
8” PMTs mounted on the inside of an 11m diameter by 10m high cylindrical tank filled with high
purity water.
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3. Dark Matter Search with an Underground Ar Target

The underground argon (UAr) was extracted from a stream of gas from a CO2 well in Cortez,
Colorado, which also contained other gases including N2 and He. Most of the CO2 and N2 was
removed on site and a mixture of ∼5% Ar, ∼5% N2, and 90% He was sent to Fermilab for purifi-
cation by cryogenic distillation [3]. DarkSide-50 TPC was filled with the purified UAr at LNGS
in Italy on April 1, 2015. To determine the 39Ar depletion factor, the UAr data was compared to
a GEANT4-based MC simulation. The MC was tuned on high statistic AAr data and validated
against several γ calibration sources. The 39Ar and 85Kr activities were measured from a simul-
taneous fit of the MC to S1 data taken with the field off (See Fig. 1) and field-on (200 V/cm)
data. The 39Ar and 85Kr activities in the UAr were determined to be (0.73±0.11) mBq/kg and
(2.05±0.13) mBq/kg respectively. The 39Ar activity of the UAr corresponds to a reduction by a
factor of (1.4±0.2)×103 relative to AAr.
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Figure 1: Comparison of the measured field off spectra for the UAr and AAr targets, normalized to exposure.
Also shown are the MC fit to the UAr data and individual components of 85Kr and 39Ar extracted from the fit.
Several γ lines are identified from 238U, 232Th, 40K, and 60Co present in the detector construction materials.

The presence of 85Kr in UAr was unexpected. To confirm its presence an independent estimate
of the 85Kr decay rate in UAr was obtained from the data, by identifying β -γ coincidences from
the 0.43% decay branch to 85mRb with mean lifetime 1.464 µs. In Fig. 2 the distribution of times
between 85Kr-85mRb events is shown. The 85Kr activity was found to be (1.92±0.05) mBq/kg,
which is consistent with the measurement obtained from the energy spectrum fit. There has been
no attempt to remove krypton from the UAr, although cryogenic distillation would likely perform
very effectively.

The DM search result with UAr [5] is based on the data set acquired from April 8 to July 31
in 2015 (70.9 live-days after data quality cuts) at a drift field of 200 V/cm. The light yield of S1

2



P
o
S
(
I
C
H
E
P
2
0
1
6
)
2
2
5

DarkSide-50 Yann Guardincerri

s]µt [∆
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

s
]

µ
E
v
e
n
t
s
 
/
 
[
0
.
1
 

0

20

40

60

80

100

120

Decay time
sµ 0.12 ±1.64 

Figure 2: Distribution of time intervals between β -γ events for 85Kr-85mRb candidate events. Candidate
events are extracted from one single LAr TPC event, and the fit window is restricted to the interval in which
the extraction algorithm is fully efficient, i.e. 0.1 µs to 2.2 µs. The delayed coincidence time of (1.64±0.12)
µs should be compared with the 85mRb lifetime of 1.464 µs [4].

signals was determined to be (8.1±0.2) PE/keV at zero field from the 83mKr peak, consistent with
the light yield in AAr. A set of criteria used to select candidate DM recoils, i.e. single NRs in the
fiducial volume, are described in detail in Ref. [5]. The PSD parameter used in this analysis is f90,
the fraction of S1 light detected in the first 90 ns of the pulse. The DM ROI is defined in the f90 vs
S1 plane with a 90% NR acceptance contour derived from the f90 response in SCENE [6], and a
leakage curve corresponding to a total predicted leakage of <0.1 events during the exposure. The
final event distribution in the f90 vs S1 plane is presented in Fig. 3, and there are no events in the
DM ROI. Given the background-free null result, a 90% C.L. exclusion curve in the WIMP mass
vs. WIMP nucleon cross section plane was derived, which is shown in Fig. 4.

4. Conclusion

The DarkSide-50 detector achieved the most sensitive limit on DM-nucleon cross section
among experiments using LAr. The 39Ar depletion factor in UAr was determined to be (1.4±0.2)×103

relative to AAr. The combination of the null result of the UAr [5] and AAr [1] exposures set an
upper limit on the WIMP-nucleon spin-independent cross section of 2.0×1044cm2 on the DM-
nucleon cross section at 100 GeV/c2 DM mass.

The DarkSide collaboration is moving towards a next-generation detector. Given the excep-
tional PSD power of LAr and high depletion factor of UAr, a direct DM search using a LAr TPC
with a fiducial mass of 20 tonne of depleted argon has been proposed. In order to suppress both NR

3
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Figure 3: Distribution of events in the f90 vs S1 plane after applying all cuts in the energy region of
interest. Shaded blue with solid blue outline: DM search region. The f90 acceptance contours are drawn
by connecting the red points derived from the SCENE measurements [6] and extending the contours using
DarkSide-50 AmBe data.

and ER backgrounds from conventional PMTs and improve light yield, silicon photomultipliers
are planned to be used and are currently under development. To acquire the required amount of
low-radioactivity argon with a sufficient depletion factor, two key projects are planned: Urania is
an enlarged argon extraction plant in Cortez, Colorado with expected capacity of 100 kg/day of
UAr; and Aria consists of two 350 m tall distillation columns to be sited in a shaft at the Serucci
mine in Sardinia. Aria is capable of reducing 39Ar in UAr further with additional depletion factor
between 10 to 100.
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