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The study of the temperature - baryon chemical potential T −µB phase diagram of strongly inter-
acting matter is being performed both experimentally and by theoretical means. The comparison
between the experimental chemical freeze-out line and the crossover line, corresponding to chiral
symmetry restoration, is one of the main issues. At present it is not possible to perform lattice
simulations at real µB because of the sign problem. In order to circumvent this issue, we make use
of analytic continuation from an imaginary chemical potential: this approach makes it possible to
obtain reliable predictions for small real µB. By using a state-of-the-art discretization, we study
the phase diagram of strongly interacting matter at the physical point for purely imaginary baryon
chemical potential and zero strange quark chemical potential µs. We locate the pseudocritical line
by computing two observables related to chiral symmetry, namely the chiral condensate and the
chiral susceptibility. We then perform a continuum limit extrapolation with Nt =6,8,10 and 12
lattices, obtaining our final estimate for the curvature of the pseudocritical line κ = 0.0135(20).
Our study includes a thorough analysis of the systematics involved in the definition of Tc(µB),
and of the effect of a nonzero µs.
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1. The critical line of QCD and the method of analytic continuation

The study of strongly interacting matter in extreme conditions is of great interest for several
reasons, due to its relation with, e.g., the physics of compact stars and of the early universe. From
the experimental side, data coming from heavy ion experiments can be used to probe the phase dia-
gram of QCD (see, e.g., [1]). As a matter of fact little is known from a theoretical standpoint about
the QCD phase diagram at finite baryon density, at least as far as deductions from first principle are
concerned: the infamous sign problem hinders numerical simulations in that regime. On the other
hand, at zero density the picture looks pretty clear: lattice simulations have reliably confirmed
the existence of a smooth crossover between the confined low-temperature region, where chiral
symmetry is broken, and the deconfined high-temperature one where chiral symmetry is restored.
The position of the crossover between the two phases can be then identified with a pseudocritical
temperature Tc, which is around 155 MeV as far as chiral symmetry is concerned.

For small values of the baryon chemical potential µB, this picture is expected to remain valid:
we can thus define the pseudocritical line of QCD as the set of points in the phase diagram for
which T = Tc(µB). It has been possible to study Tc(µB) in QCD with physical quark masses with
two approaches: Taylor expansion [2, 3, 4] and analytic continuation from imaginary µB [5], which
was recently employed in [6, 7] and in the work presented here [8]. Analytic continuation relies on
the fact that for a purely imaginary chemical potential the Dirac operator retains the property that
guarantees its determinant at µB = 0 to be real, thus removing the sign problem present at real µB.

Given the parity of the QCD partition function in µB, the behaviour of Tc with µB should be of
the form

Tc(µB)

Tc
= 1−κ

(
µB

Tc(µB)

)2

+O(µ4
B,I) = 1+κ

(
µB,I

Tc(µB,I)

)2

+O(µ4
B,I) , (1.1)

assuming analyticity for µB = 0. In the last part of the equation, the imaginary baryon chemical
potential µB,I =−iµB is introduced. The present work is aimed to determine the coefficient κ , i.e.
the curvature of the crossover line of QCD, performing a careful analysis of the systematic errors
involved in order to obtain a reliable continuum extrapolated estimate.

The bulk of our simulations is performed with the strange quark chemical potential µs set to
zero. This is not a priori the right setup to compare with heavy ion collision experiments where the
strangeness S is zero, since ∂ns/∂ µl is not null. We should in fact fine-tune the values of µl and
µs to reach strangeness neutrality: for example at T = Tc, nS = 0 would require µs ' 0.25µl [9].
For these considerations, we scheduled a number of simulations to study the setup with µs = µl as
well, in order to obtain data in a range which is supposed to cover also the ns = S = 0 case.

2. Observables

For the determination of Tc(µB), we used 2 different prescriptions based on 3 quantities related
to chiral symmetry in the up and down quark sector. We looked at the light chiral condensate,
renormalized in two different ways 〈ψ̄ψ〉r(1) and 〈ψ̄ψ〉r(2) (introduced in [10] and [4], respectively)
and at the full renormalized chiral susceptibility χr

ψ̄ψ [11]. We define the crossover temperature as
the abscissa of the inflection point for the condensates, and as the abscissa of the maximum in the
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case of the chiral susceptibility, locating these points by a fitting procedure (see Fig.1). The data
for the renormalized chiral condensate(s) has been fitted with an arctangent function, while for the
renormalized chiral susceptibility we opted for a Lorentzian form:

〈ψ̄ψ〉r(T ) = A1 +B1 arctan [C1 (T −Tc)] , χ
r
ψ̄ψ(T ) =

A2

(T −Tc)2 +B2
2
. (2.1)

These definitions of Tc(µ)B) can be considered faithful, as for a proper phase transition (i.e., not
the analytical crossover present with physical quark masses) they would give the corresponding
critical temperature.

Our strategy is to determine Tc for a number of values of µB,I and fit the data points with the
expression in Eq.(1.1) to obtain κ .
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Figure 1: Dependence of the renormalized observables on the temperature. The results of the fits are also
plotted. (from [8]). Left: renormalized chiral condensate 〈ψ̄ψ〉r(1). Right: renormalized chiral susceptibility
χr

ψ̄ψ .

3. Numerical setup

Our lattice simulations were performed making use of a tree level Symanzik improved gauge
action with root-staggered stout-improved fermions, at the physical point, which means we tuned
the quark masses with β following the line of constant physics1 obtained in [12] (see [8] for details).

An analysis of finite size effects was done in [8], where we found that for lattice aspect ratio
L/T equal to 4 such effects were negligible. This translates to a lattice spatial size of about 5 fm
(for temperatures around Tc(0)). For this reason, we have since then run simulations on 323× 8,
403×10 and 483×12 lattices in order to perform a continuum limit extrapolation of κ in the setup
µs = 0.

To compute renormalized observables we also had to measure bare quantities in zero temper-
ature setups (on 324 and 483×96 lattices).

The effect of a nonzero µs has been studied with simulations in which µs = µl , in addition to
the “standard” ones at µs = 0, for several values of µl (on the 323× 8 lattice only: again, see [8]
for details).

1This means tuning the parameters in the lattice action so that a set of quantities, e.g. mπ , have the physical value.
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4. Numerical results

The continuum limit has been computed in two ways, with the aim of assessing the systematics
involved. In the first method, we extrapolated directly κ to the continuum, while in the second
method observables and pseudocritical temperatures were extrapolated to continuum limit and then
κ was computed from these.

It has to be remarked that the results of the fit used for locating Tc(µB) is affected both by the
form of the function used the choice of the fit range. Our estimate of the the systematic errors on
Tc(µB) is based on the differences obtained by varying the fit range and changing the function used
in the fit with reasonable alternatives. Statistical uncertainties were instead computed making use
of a bootstrap analysis.

4.1 The effect of a nonzero µs

Our results about the effect of a nonzero µs are shown in Fig. (2, left). The result of our analysis
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Figure 2: Left: The effect of the inclusion of a nonzero chemical potential: the critical line on the µl,I-
T plane in the two cases, µs = 0 (red) and µs = µl (black) [from the normalized chiral susceptibility].
Right: Critical lines from the 483×12 lattice, from different chiral observables.

is that, up to the present level of accuracy, the values of κ obtained in the µs = 0 and µs = µl cases
are compatible if a quartic term in µl,I is taken into consideration on the latter situation. In fact,
omitting that term and fitting the data for µs = µl just with a quadratic expression, the obtained
χ2/ndo f is 2.4, while including that term we obtain χ2/ndo f ' 1. Given the results of this analysis,
we expect the value of κ measured in the strangeness neutrality condition not to be significantly
different from the value obtained here.

4.2 The continuum limit

In the first method κ is computed for each value of Nt (6,8,10 and 12) and the obtained cur-
vatures are extrapolated to the continuum limit, assuming corrections of order 1/N2

t . The resulting
values are κ = 0.0134(13),0.0127(14),0.0132(10), respectively from the renormalized chiral con-
densate I, II and the renormalized chiral susceptibility. The results of this method are shown in
Fig. (3, left).
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Figure 3: Estimates of the curvature of the pseudocritical line. Left: our continuum extrapolated results
(first method) for κ . Right: values of κ from the literature.

In the second method we made an ansatz on the combined dependence of the observables on
the temperature and on the lattice spacing. By making use of data from Nt = 8,10 and 12 lattices
we obtained the continuum extrapolated values of the observables as a function of T , as shown in
Figs. (4, left), as well as a continuum extrapolated estimate of Tc(µB). We then fitted the Tc(µB)

with the form of Eq.(1.1) and obtained κ = 0.0145(11),0.0138(10),0.0131(12) from 〈ψ̄ψ〉r(1),
〈ψ̄ψ〉r(2), and χr

ψ̄ψ respectively: this procedure is shown in Fig. 4, and we notice that these results
are compatible with the ones obtained with the first method.
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Figure 4: Continuum limit of the observables. Left: renormalized chiral condensate 〈ψ̄ψ〉r(1). Right :
critical lines in the µl,I versus T plane obtained with the method of continuum extrapolated observables.

5. Conclusions

Considering also the uncertainty derived from the strangeness neutrality issue, we give κ =

0.0135(20) as an estimate of the curvature of the chiral crossover line. In Fig. 3 we show the
comparison of our value with the ones obtained in the recent literature at the physical point. While
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old determinations lacked a careful assessment of the systematics, we can state the most recent
determinations of κ are in agreement within errors.
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