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1. Introduction

Since the discovery of neutrino oscillations, leptonic flavour mixing has been measured to a
high level of precision by a series of neutrino oscillation experiments [1]. The two mixing angles
03 and 6, have been determined precisely by solar and reactor experiments to be 0;3 = 8.46° +
0.15° and 61, = 33.56°f8;; in the 10 range. The least well known angle is 8,3 which is currently
measured to be 63 = 41.6°"13 or 50.0°" 11 in 10, and (38.4°,53.0°) in 30, with the octant -
whether 6,3 > 45° or < 45°, not established. There is a preliminary hint of maximal CP violation
with the CP-violating phase 6 around 90°, but no constraint in the 30 range [2].

These results strongly suggest specific flavour mixing structures in the lepton sector. Discrete
flavour symmetries have emerged as a powerful tool to explain these mixing patterns. In these mod-
els the values of the parameters can be predicted or specific correlations between parameters are
obtained and the CP-violating phase can take special values, for instance, conserving or maximally-
violating values [3]. The precision measurement of mixing angles and the CP-violating phase &
will be a crucial task in the next-generation neutrino oscillation experiments, such as DUNE and
T2HK. They will allow to test the flavour models both by constraining the individual parameters
and in probing the correlations among them.

Hunting for a theory which explains the origin of neutrino masses and mixing, the low energy
parameters provide guidance as they are correlated with the ones of the full Lagrangian. In partic-
ular, low energy leptonic CP violation is a crucial ingredient as it may share the same origin as that
for new particles at high energy [4], which in many models plays a key role in the generation of the
matter-antimatter asymmetry in the early Universe [5].

Here we discuss the theoretical motivations for the precision measurement of mixing param-
eters in neutrino oscillations, discussing its impact in flavour model building and the correlation
with baryogenesis. We will emphasise a novel mechanism of baryogenesis resulting from a flavon
phase transition, in which a strong connection between the lepton asymmetry and flavour models
arises.

2. Flavour models

Several constant mixing patterns have been proposed, which invoke specific values of the
angles, including

e democratic mixing [6]: 8, = 45° and 6,3 = 54.7°;
e bimaximal mixing [7]: 61, and 6,3 are 45°;

e tri-bimaximal (TBM) mixing [8]: 6,3 =45° and 0y, = 35.3°, very close to current oscillation
data;

e others as shown in Fig. 1.

Many of these patterns predict a vanishing 63, and are therefore excluded by current data [2] or
require special large corrections [9].

A common way to understand these flavour mixing patterns is to assume an underlying sym-
metry in the flavour space. In most models, this flavour symmetry is often accompanied by the
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Figure 1: Mixing angles from constant mixing patterns vs oscillation experimental data.

introduction of some new scalars called flavons. The flavons have specific couplings with lep-
tons satisfying the flavour symmetry. They gain vacuum expectation values (VEVs), leading to
the breaking of the flavour symmetry. The flavour mixing is a result of the preserved coupling
structures after the breaking.

We do not know the flavour symmetry. It may be Abelian or non-Abelian, continuous or
discrete. An Abelian U(1) symmetry may be helpful for realising hierarchical mass structures,
such as in the Froggatt-Neilsen mechanism [10]. The discrete case, Z, symmetries, can be used to
realise texture zeros of the mass matrices, which further predict relations between mixing angles
and mass ratios [11]. A continuous non-Abelian symmetry may predict maximal atmospheric
mixing [12]. Besides them, non-Abelian discrete symmetries are particularly interesting because
they can predict most of the constant mixing patterns in Fig. 1 [3].

A typical example is the realisation of TBM in the framework of the tetrahedral group A4, with
the generators S and 7 satisfying S*> = T3 = (ST)® = 1 [13]. It has four irreducible representations
1,1, 1” and 3. The products of two 3d representations are reduced as 3 x3=1+1"+1" 435+ 34,
where g and 4 denote the symmetric and anti-symmetric parts, respectively. In general, the SM
lepton doublets ¢ = (£,,0y,¢;)" are assumed to form a triplet 3 of A4. The right-handed (RH)
charged leptons eg, g and Tx transform as singlets 1, 1’ and 1”, respectively, and the Higgs H ~ 1.
We introduce three gauge-invariant flavons ¢ ~ 3, ¥ ~ 3 and n) ~ 1. In the type-I seesaw with RH
neutrinos N ~ 3, the Lagrangian terms for generating lepton masses are given by [14]

~ % = 2 (Ep)1erH + 2 (1) pnH + 25 () TeH +hc.+ -

—%y = yp({LN)1H + %1 ((N°N)3gx), + %(WN)ln +he. A+, (2.1)

where the dots stand for higher dimensional operators. Once the flavons and the Higgs gain VEVs,
v VH

=(1,0,0)"v,, =(1,1,1)T £ =y, H)=—Z%. 2.2

(@) = (1,0,0)" vy (=117 == ) =vy (H) v (2.2)

leptons obtain masses and the TBM mixing is realised.
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There are a series of interesting discrete groups, S4, As, the A(3n2) and A(6n2) series, et.
al. [3]. With the assumption of some particular flavon vacuum alignments, most mixing patterns
shown in Fig. 1 can be realised.

One essential question of model building is how to realise the vacuum alignments, i.e., (¢)
and (x) in Eq. (2.2). Different mechanisms have been proposed to solve it [14], but inevitably
lots of new degrees of freedom have to be introduced, which are not essential for the realisation of
flavour mixing. In Ref. [15], we find that such simple vacuum alignments may be a result of the
spontaneous breaking of the flavour symmetry. For example, in A4 models, the VEVs of ¢ and x
in Eq. (2.2) can be directly obtained from their self couplings in the potential. The cross coupling
between ¢ and ), which modifies the vacuum alignments, cannot be forbidden. Fortunately, once
we assume it to be small due to phenomenological considerations, it shifts the VEVs slightly and
gives rise to 6;3 and CP phase 6. In the simplest case (¢; = @, ¢ = @3, x1 = x; and x2 = x3),
the VEVs are shifted to

v
(0) ~ (1,69,€5) v, (x)~(1-2¢;,1+8,1+8) %, (2.3)
V3
and non-zero 6,3, 0 are obtained with expressions sin 63 ~ \Re8¢| and 6 ~ F90° — 2Regy, where
€y is complex and &y is real. Almost maximal CP violation is predicted, and a new sum rule

8~ T(90° +v26;3). (2.4)

is found [15]. The mixing angles 6;, and 68,3 also gain small corrections from their leading order
values. This model can be tested in the future oscillation experiments.

In the framework of flavour symmetries, the CP symmetry can be extended to the generalised
CP (GCP). The basic idea is that for a multiplet ¢ in the flavour space, the CP transformation
should be a combination of the traditional CP and a basis transformation in the flavour space, i.e.,

GCP: ¢ — X 0" (2.5)

Here, X is called the GCP transformation matrix. It is a unitary matrix, not arbitrary, but must
satisfy the consistency condition p(g’) = Xp(g)X !, where p(g’) and p(g) are representation ma-
trices of the group elements g’ and g, respectively [16]. Due to this condition, once the flavour
symmetry is fixed, all the candidates of GCP transformations will be determined. This approach
makes powerful predictions, with only one free parameter in the mixing matrix [4]. A theory with
GCP symmetries does not mean that it preserves the ordinary CP symmetry unless X = 1. One
famous example is the so-called u-7 reflection symmetry [17], which corresponds to the transfor-
mation e < €, 1 <+ 7. It gives rise to the maximal atmospheric mixing and maximal CP violation
0 = £90°. This symmetry can be predicted by A4, or any other groups containing A4 [3].

3. Lepton asymmetry

Precision measurements of mixing angles and the CP phase 6 may help us to understand
the origin of the matter-antimatter asymmetry in the Universe. The observed ratio of the baryon
to photon is Mg ~ 6.2 x 107!° [1]. One of the most studied mechanisms for its generation is
leptogenesis.
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In the typical implementation of leptogenesis in type-I seesaw models [5], the decay of RH
neutrinos produces a lepton asymmetry which is later partly converted into a baryon asymmetry
through Sphaleron processes. The lepton asymmetry Af = f,z — f directly depends on the asym-
metry between the decay rate of N — ¢y H and of the CP-conjugate process N — {,H*. Ignoring
flavour effects,

M,

Afges Y Im{{(Y )}, 3.1
i=23 i

where Yy; is the Yukawa coupling coefficient between ¢, and RH neutrino mass eigenstate N; with
Ny the lightest one. To generate a non-zero Afz, the condition Im{[(Y*Y);]*} # 0 is required.

In most flavour models based on non-Abelian discrete flavour symmetries, the above condi-
tion is not satisfied. The reason is that these models prefer a special feature of Y. For example,
Y from Eq. (2.1) is given by ¥ = (yDvH/\@)Uglngv, where Uy and U, are unitary matrices
diagonalising the charged lepton and RH neutrino mass matrices, respectively. While these models
are more predictive, they imply Im{[(YY);;]?} = 0. A lepton asymmetry could still generated at
higher orders.

Recently, we have proposed a new mechanism which shows strong connection between the
lepton asymmetry and flavour models [18]. Different from thermal leptogenesis, this mechanism
does not generate the lepton asymmetry through the decay of any heavy particles, but from a CP-
violating phase transition. In this new mechanism, we do not specify any neutrino mass origins, but
require the coefficients A, of the lepton-number-violating Weinberg operator (Aqg /A) o  HH TE% L+
h.c. be dynamically realised during the phase transition of a flavon ¢,

Aap = Ao +7L;,ﬁ<v¢;>. (3.2)

During the vacuum phase transition from the trivial phase (¢) = 0 to the phase (¢) = v, the cou-
pling A, is time-dependent, the lepton asymmetry is generated via the interference of the Wein-
berg operator at different times. Technically, to calculate this asymmetry, we work in the closed
time path formalism, and the lepton asymmetry is obtained from a 2-loop self-energy correction,
B 3Im{tr[m9*mv]}T2F< k y)
tk (2m)*v, 2T'T )
where m{) = A%, /A, my = AvZ, /A, vis the sum of the thermal widths of the Higgs and the leptons,
and F(k/2T,y/T) is a loop factor. As shown in Ref. [18], the loop factor provides an &'(10) factor

enhancement. While m, is identical to the active neutrino mass matrix, m{ is an effective mass

(3.3)

parameter corresponding to the flavour structure before ¢ gets a VEV, which is strongly dependent
upon the flavour model construction and worth further studies. Without loss of generality, one
may assume Im{tr[m{m}]} to be of the same order as m? ~ (0.1 eV)?2. Then, the temperature for
the phase transition approximates to 7" ~ 10\/% v} /my. Requiring A fix ~ N, we conclude the
temperature for successfully baryogenesis is T ~ 10'! GeV.

4. Summary

Precision measurements of the mixing angles and the CP violation can guide flavour model
building and may be helpful for understanding the mysteries of the baryon asymmetry in the ob-
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served Universe. We have reviewed how the observed mixing pattern can be realised using discrete
flavour symmetries. We have focussed on a new approach of flavour model building based on
flavon cross couplings, which break some of the residual discrete symmetries and reconcile model
predictions with the measured values of the mixing angles, without introducing additional degrees
of freedom. A sum rule between 0;3 and & is obtained and almost maximal CP violation is pre-
dicted. In the end, we have presented a novel mechanism of leptogenesis via the CP-violating
phase transition. It does not require a specific model for neutrino mass generation. This mecha-
nism shows a strong connection between the lepton asymmetry and flavour models which is worth
further studies.
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