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Hadronic tau decays belong to the processes that show a resonance-like structure in the axial

vector current in the 1− 2 GeV range. This structure, often denoted as the a1 meson, seems

to show different properties in different processes. The process τ → 3πντ allows for a clean

separation of weak and strong effects and a clear production mechanism. We examine how this

structure can be related to interactions between the three pions that emerge in the final state. In

particular we start from the interactions between all two body combinations.
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1. Interest in τ → 3πντ

The axial vector current in the few GeV range plays a role in many processes, for example decays

of B and D mesons, Higgs decays and neutrino scattering. The models employed to describe this

current partly boil down to summing up Breit Wigner lineshapes and fitting to the invariant mass

of the final state system, e.g. in τ → 3πντ . The dominant resonance-like structure is denoted as

a1 meson. However, the properties of this meson, as listed in the PDG, depend on the production

mechanism, and contrast significantly between πP → 3πP and the tau decay. This situation calls

for a conceptual improvement of the models. On one hand, of course the Dalitz plot distributions

should be considered in any resonance model. On the other hand, more information on the spin

structure is available from structure functions, observables that are directy related to helicity ampli-

tudes. In order to use this additional information we refrain from any Breit Wigner parametrization

and start from the two pion interactions which are known from ππ scattering.

2. Definitions

We consider the semileptonic decay, see Fig. 2,

τ(l1)→ ντ(l2)+π(p1)+π(p2)+π(p3), (2.1)

and its description following Refs. [1, 2]. The general amplitude is

M = cosθC

GF√
2

LµHµ . (2.2)

where θC is the Cabibbo angle. The leptonic part can be written in the standard model as Lµ =

ū(l2)γµ(1−γ5)u(l1). For the hadronic part of the tau decay, we can write the generic matrix element

H
i jkl
µ = 〈π i(p1)π

j(p2)π
k(p3)|V l

µ(0)−Al
µ(0)|0〉, V l

µ =
1

2
q̄τ lγµq, Al

µ =
1

2
q̄τ lγµγ5q, (2.3)

where i jkl are isospin indices and τ l the Pauli matrices in isospin space. For an odd number of final

τ

ντ

W

π

Figure 1: Schematic rescattering of pions from the tau decay.

state pions, the vector contribution vanishes and we consider only the axial part in the following.

One possible decomposition is into form factors, as used e.g. in Ref. [2]. However, we use instead a

decomposition of the matrix element into helicity amplitudes, since these have a simple expansion

into partial waves. The partial waves yield a simple form of the unitarity relations that we are

interested in.

The helicity amplitudes can be expressed in the Mandelstam plane where s, t,u correspond to the

1
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two-by-two scattering element 〈π(p1)π(p2)|π(−p3)Aµ(Qµ)〉. For three body decays often denoted

as Dalitz plot invariants s1,s2 and s3, here we use

s = (p1 + p2)
2, t = (p2 + p3)

2, u = (p1 + p3)
2, Q2 = s+ t +u−3M2

π . (2.4)

The center-of-mass scattering angle in each channel, θs,θt and θu, respectively, are related to the

Kacser function

K(s) =
t −u

cosθs

=
√

λ (s,M2
π ,M

2
π)
√

λ (s,Q2,M2
π). (2.5)

The Källén function λ (a,b,c) = a2 +b2 + c2 −2(ab+bc+ ca) can be written

λab(s) = λ (s,M2
a ,M

2
b) = [s− (Ma −Mb)

2][s− (Ma +Mb)
2]. (2.6)

With the definitions Lµν = LµL
†
ν and Hµν = HµH

†
ν of the leptonic and hadronic tensor the differ-

ential decay rate is given by

dΓ(τ → ντ 3π) =
1

2mτ
|M |2dΦ =

G2
F

4mτ
cos2 θCLµνHµνdΦ, LµνHµν =∑

X

LXWX , (2.7)

where dΦ is the phase space element. Lµν and Hµν , can be combined to form 16 symmetric and

antisymmetric structure functions WX . One useful basis for the hadronic structure functions WX is

defined via the polarization of the final state system. Consider the polarization vectors εµ(λ ) of the

three pions in their c.m. frame or the W boson in its rest frame, respectively. We can now define

the helicity amplitudes

A
i jkl

λ
:= 〈π i(p1)π

j(p2)π
k(p3)|Al

µ(0)ε
µ(λ )|0〉, (2.8)

where the subscript denotes the helicity. The outgoing pions have the two possible physical states

|π0π0π±〉 and |π+π−π±〉, that can be related by their isospin structure and crossing symmetry. In

the following we will consider A
π0π0π±

λ
(s, t,u)=̂A 3311

λ (s, t,u) and neglect isospin breaking.

3. Method and parametrization

We approximate the transverse amplitude similar to Refs. [3, 4],

A
3311
+ (s, t,u) ∝

lmax

∑
l=0

∑
I

(2l +1)

[

dl
10(θs)

(

K(s)

4s

)l−1

P3311
I a+,Il(s)+dl

10(θt)

(

K(t)

4t

)l−1

P3131
I a+,Il(t)

+dl
10(θu)

(

K(u)

4u

)l−1

P1331
I a+,Il(u)

]

, (3.1)

where P
i jmn
I is the isospin projection operator. The relevant Wigner d-matrix is given by dl

10(θ) =

−sinθ/
√

l(l+1)P′
l (cos θ), where the prime denotes a derivative of the Legendre polynomial. The

above expansion results in partial waves aIl that contain no kinematical but only dynamical cuts.

This allows us to relate the parts of the partial waves that contain the left- and right-hand cuts

a
right/le f t

Il (s) in an iterative procedure suggested by Khuri and Treiman [5].
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In the following we always consider aIl = a+,Il . For each channel, we can write the discontinuity

as a sum of the unitarity cut in this channel and those from the crossed channel as a
le f t
Il

Disc aIl(s) = ρ(s)t∗l (s)
(

a
right
Il (s)+a

le f t
Il (s)

)

, (3.2)

where ρ(s) =
√

1−4M2
π/s and tl(s) is the partial wave of the two-pion system, well-known from

ππ scattering. This discontinuity enters the standard dispersion relation, e.g. unsubtracted,

a
right
Il (s) =

1

π

∫ ∞

s0

ds′
Disc a

right
Il (s′)

s′− s
, s0 = 4M2

π . (3.3)

Expanding A 3311
+ (s, t,u) in the s-channel physical region, comparing to Eq. (3.1), multiplying both

sides with P′
l (zs) and integrating over zs = cosθs we can write

a
le f t
Il (s) ∝ ∑

I′,l′
(2l′+1)

∫ +1

−1
dzs(1− z2

s )P
′
l (zs)

(

P′
l′(zt)C

II′
st aI′l′(t(s,zs))+P′

l′(zu)C
II′
su aI′l′(u(s,zs))

)

,

(3.4)

where Cst/su are the standard crossing matrices, see e.g. Ref. [4]. To find a solution of this set of

equations, we parametrize the transverse partial wave amplitudes similiar to Ref. [6], as

aIl(s) = ΩIl(s)

(

n−1

∑
i

cis
i +

sn

π

∫ ∞

s0

ds′

s′n
ρ(s′)t∗l (s

′)

Ω∗
Il(s

′)

a
le f t
Il (s′)

(s′− s)

)

, ΩIl(s) = exp

(

s

π

∫ ∞

s0

ds′

s′
δIl(s

′)
s′− s

)

,

(3.5)

where the Omnès functions ΩIl(s) contain the unitary cut in s, and we use their parametrization

from Ref. [7]. The term in brackets in Eq. (3.5) contains the cuts from the crossed channels and

corresponds to an n-times subtracted dispersion relation with the subtraction constants ci. In a

first step the left-hand cuts can be set to zero. However, three main restrictions of this approach

are relevant in our case. First, the framework relies on the assumption that two body interactions

dominate. This assumption is only justified at low energy, Q2 ≪ 1 GeV2. Second, the truncation

of Eq. (3.1) induces an uncertainty that has to be tested in practice. Third, a precise knowledge of

the individual waves decreases with increasing energy.

4. Preliminary results

Our calculation for the helicity amplitudes can directly be compared to the experimentally deter-

mined structure functions. All structure functions that are not compatible with zero according to

CLEO [8] can be related to WA(s, t,u) ∝ |A 3311
+ (s, t,u)|2 + |A 3311

− (s, t,u)|2 [1]. In Fig. 2 we show

the structure functions given by the CLEO collaboration in the corresponding bins and our fit result.

Here we ignore the left hand cuts which corresponds to the first iteration step in a Khuri Treiman

approach. For a complete analysis, see Ref. [9]. The dotted lines show the binning in Q2, the solid

line bars correspond to bins in s and t and the red dashed line to our preliminary fit. Changing

the variables by Eq. (2.4) and integrating WA(Q
2,s, t) over s and t yields the integrated structure

functions wA,int(Q
2) shown in Fig. 3. Here, a three body resonance-like structure occurs and can

3
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Figure 2: Structure functions from CLEO [8].

be reproduced qualitatively by our parametrization based on two body interactions. Both figures

on structures functions show a better agreement with the data for lower bin numbers or lower Q2

values, respectively. For this kinematical region the Omnès functions are known with higher pre-

cision. For close to vanishing Q2 values the Khuri Treiman approach would be justified, as the

dominating two body interaction corresponds to first order contributions in chiral perturbation the-

ory. The CLEO measurement [8] found the contributions from an off-shell W to be compatible
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Figure 3: Integrated structure functions from CLEO [8].

with zero. We thus approximate the decay rate by the transverse component [1]

dN

NdQ2

∣

∣

∣

∣

λ=1

∝

(

(M2
τ −Q2)

Q2

)2
(

1+2Q2/M2
τ

)

wA,int(Q
2). (4.1)

The comparison to the decay rates from CLEO and ALEPH is given in Fig. 4. Due to the very

coarse grained bins in s and t, we show the binning in Q2. Again, the fit does not contain a specific

parametrization of the three body resonance like a Breit Wigner, but merely two body interactions.

This might hint towards an interesting origin of the a1 meson, and/or towards the necessity for
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Figure 4: Decay rate from a fit to CLEO structure functions, also compared to ALEPH [10].

more iterations in the partial wave procedure or to include also three body unitarity. As a feasibility

study, this work shows a good first description of the structure function and the tau decay rate.

Therefore for a future detailed analysis it would be desirable to obtain the Dalitz plot distributions

for a direct analysis, in particular from more precise measurements by Belle and BABAR. The full

Dalitz plot information will help to separate the different uncertainties, namely the knowledge of

the Omnès functions, the range of applicability of the approach and the truncation error.
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