We present updated results of ϵ_K evaluated directly from the standard model with lattice QCD inputs. Here, we use the lattice QCD inputs for \hat{B}_K, $|V_{cb}|$, ξ_0, ξ_2, $|\nu|$, and $m_c(m_c)$. Recently, FLAG has updated \hat{B}_K. RBC-UKQCD has also updated ξ_0 and ξ_2. Exclusive $|V_{cb}|$ has been updated with new lattice data in the $\bar{B} \to D\ell\bar{\nu}$ decay mode, too. We find that the theoretical value of ϵ_K with exclusive $|V_{cb}|$ (lattice QCD inputs) evaluated directly from the standard model is 3.2σ lower than the experimental value, while that with inclusive $|V_{cb}|$ (heavy quark expansion) has no tension.
1. Introduction

We have been monitoring ϵ_K since 2012, which is the indirect CP violation parameter in neutral kaons calculated directly from the standard model (SM) using lattice QCD inputs. The parameter ϵ_K is very precisely measured in experiment. From the theoretical point of view, it comes from the FCNC loop effects of box diagrams in the SM, and so provide a direct probe of CP violation in the neutral kaon system. Hence, naturally it is sensitive to physics models beyond the standard model (BSM). In this paper, we present results of ϵ_K evaluated directly from the SM with lattice QCD inputs. We also compare them with the experimental results. This paper is an update of our previous paper [1, 2].

2. Input parameters

The master formula for ϵ_K in the SM is

$$\epsilon_K = e^{\theta} \sqrt{2} \sin \theta \left(C_e X_{SD} \xi_0 + \xi_{\text{LD}} \right) + O(\omega e') + O(\xi_0 \Gamma_2/\Gamma_1). \quad (2.1)$$

Here, the short distance contribution proportional to ξ_0 gives a contribution of about 105% of ϵ_K. The long distance effect, ξ_{LD}, from the absorptive part gives about -5% correction. The long distance effect, ξ_{LD} from the dispersive part gives about $\pm 1.6\%$ correction. Details on remaining input parameters such as C_e, X_{SD}, ξ_0, and ξ_{LD} are given in Ref. [1]. We need 18 input parameters to determine ϵ_K in the SM. Six of them can, in principle, be obtained from lattice QCD: \hat{B}_K, V_{cb}, V_{us}, ξ_0, ξ_{LD}, and $m_c(m_c)$. Here, we address recent progress on determining those input parameters.

| Decay mode $|V_{ab}|$ | Ref. |
|------------------|------|
| $\bar{B} \to \pi^0\bar{\nu}$ | 3.72(16) | [3] |
| $\bar{B} \to \pi^0\bar{\nu}$ | 3.61(32) | [4] |
| ex-combined | 3.70(14) | this paper |
| $\bar{B} \to X_u \ell\bar{\nu}$ | 4.45(16)/22 | [5] |

Table 1: Results for $|V_{ab}|$

| Decay mode $|V_{cb}|$ | Ref. |
|------------------|------|
| $\bar{B} \to D^*\ell\bar{\nu}$ | 39.04(99)(19) | [6] |
| $\bar{B} \to D\ell\bar{\nu}$ | 40.7(10)(2) | [7] |
| ex-combined | 39.62(60) | this paper |
| $\bar{B} \to X_c \ell\bar{\nu}$ | 42.00(64) | [8] |

Table 2: Results for $|V_{cb}|$

Recent results for $|V_{ab}|$ and $|V_{cb}|$ are presented in Tables 1 and 2, respectively. Recently, DeTar has collected the lattice QCD results of FNAL/MILC [9] and HPQCD [10], and the experimental results of Babar [11] and Belle [12] for the $\bar{B} \to D^*\ell\bar{\nu}$ decay mode. He has made combined fit of all of them simultaneously to determine $|V_{cb}|$ [7]. The “ex-combined” result in Table 2 corresponds to a weighted average of the V_{cb} results from the $\bar{B} \to D^*\ell\bar{\nu}$ and $\bar{B} \to D\ell\bar{\nu}$ decay channels. Similarly, the “ex-combined” result in Table 1 corresponds to a weighted average of the two V_{ab} results from $\bar{B} \to \pi^0\bar{\nu}$ decay. In Fig. 1, we show all the results simultaneously.\footnote{The plot is based on that by Andreas Kronfeld in Ref. [7].} We find that the inclusive results show about 3σ tension with those from exclusive B meson decays respectively as well as from the LHCb results for $|V_{ab}|/|V_{cb}|$, which corresponds to the magenta band in Fig. 1.

We have two independent methods to determine ξ_0 in lattice QCD: the indirect and direct methods. In the indirect method, we determine ξ_0 from the experimental values of $\Re(e'/e)$, ω, \ldots
The yellow band represents $|V_{cb}|$ determined from the $\bar{B} \rightarrow D^* \ell \nu$ decay, and the yellow-green band $|V_{cb}|$ determined from the $\bar{B} \rightarrow D \ell \nu$ decay. The yellow band represents $|V_{ub}|$ determined from the $\bar{B} \rightarrow \pi \ell \nu$ decay, and the magenta band $|V_{ub}/V_{cb}|$ determined from the LHCB data of the $\Lambda_b \rightarrow \Lambda_c \ell \nu$ and $\Lambda_b \rightarrow p \ell \nu$ decays. The orange circle represents the combined results for exclusive $|V_{cb}|$ and $|V_{ub}|$ from the B meson decays, and the black cross \times the inclusive $|V_{cb}|$ and $|V_{ub}|$ (heavy quark expansion).

$|V_{cb}| \times 10^3$

and ε_K using the lattice QCD input ξ_2. The master formulas are

$$\xi_0 = \frac{\text{Im} A_0}{\text{Re} A_0}, \quad \xi_2 = \frac{\text{Im} A_2}{\text{Re} A_2}, \quad \text{Re} \left(\frac{\varepsilon}{\varepsilon_K} \right) = \frac{\omega}{\sqrt{2}|\varepsilon_K|} (\xi_2 - \xi_0).$$

(2.2)

Recently, RBC-UKQCD reported updated results for ξ_2 [13]. The results for ξ_0 from the indirect method are presented in Table 3.

<table>
<thead>
<tr>
<th>Input</th>
<th>Method</th>
<th>Value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_0</td>
<td>indirect</td>
<td>$-1.63(19) \times 10^{-4}$</td>
<td>[13]</td>
</tr>
<tr>
<td>ξ_0</td>
<td>direct</td>
<td>$-0.57(49) \times 10^{-4}$</td>
<td>[14]</td>
</tr>
<tr>
<td>ξ^LD_0</td>
<td>—</td>
<td>$(0 \pm 1.6)%$</td>
<td>[15]</td>
</tr>
</tbody>
</table>

Table 3: Long distance effects: ξ_0 and ξ^LD_0.

Recently, RBC-UKQCD has reported new lattice QCD results for ImA_0 [14]. Combining them with the experimental value of ReA_0, we can determine ξ_0 directly from the lattice input ImA_0 using the master formula in Eq. (2.2). This is the direct method. In Ref. [14], RBC-UKQCD has also reported the S-wave $\pi - \pi$ scattering phase shift with isospin $I=0$: $\delta_0 = 23.8(49)(12)$. This value is 3.0σ lower than the conventional value of δ_0 in Refs. [16] (KPY-2011) and [17, 18] (CGL-2001). KPY-2011 used a singly subtracted Roy-like equation and CGL-2001 used a doubly subtracted Roy equation (CGL-2001) to do the interpolation around $\sqrt{s} = m_K \approx 500$MeV. The values for δ_0 are summarized in Table 4. The KPY-2011 fits to the experimental data work well from the $\pi - \pi$ threshold (≈ 280MeV) to $\sqrt{s} = 800$MeV. In addition, KPY-2011 is highly consistent with CGL-2001 in the interpolating region around $\sqrt{s} = m_K \approx 500$MeV.

For δ_0 (S-wave, $I=0$), we plot the results of RBC-UKQCD together with those of KPY-2011 and CGL-2001 in Fig. 2. We find that there is essentially no difference between KPY-2011 and CGL-2001 in the region near $\sqrt{s} = m_K \approx 500$MeV. Here, we observe the 3.0σ gap between RBC-UKQCD and KPY-2011. In contrast, for δ_2 (S-wave, $I=2$), we observe no tension between RBC-UKQCD and KPY-2011, as one can see in Fig. 3.

Therefore, we conclude that the results of the indirect method are more reliable than those of the direct method for ξ_0, since the direct calculation of ImA_0 by RBC-UKQCD might have unresolved issues. Hence, we use the indirect method to determine ξ_0 in this paper.

ξ^LD_0 represents the long distance effect in the dispersive part. Its master formula in the continuum is given in Ref. [1]. A theoretical framework for calculating it on the lattice is well established.
in Ref. [15]. An on-going efforts to calculate it on the lattice can be found in [19]. However, this attempt [20], at present, is in a exploratory stage yet. Hence, we use the rough estimate of ξ_{LD} given in Ref. [15].

Recent results for \hat{B}_K in lattice QCD market with $N_f = 2 + 1$ flavors are summarized in Table 5. Here, FLAG-2016 represents the global average of the results of BMW-2011 [21], Laiho-2011 [22], RBC-UK-2016 [23], and SWME-2016 [24]. For more details, refer to Ref. [25]. SWME-2014 and RBC-UK-2016 represent the \hat{B}_K results reported in Refs. [26] and [23], respectively. Here we use the FLAG-2016 result for \hat{B}_K.

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAG-2016</td>
<td>0.7625(97)</td>
<td>[25]</td>
</tr>
<tr>
<td>SWME-2014</td>
<td>0.7379(47)(365)</td>
<td>[26]</td>
</tr>
<tr>
<td>RBC-UK-2016</td>
<td>0.7499(24)(150)</td>
<td>[23]</td>
</tr>
</tbody>
</table>

Table 5: \hat{B}_K

For the Wolfenstein parameters λ, $\bar{\rho}$, and $\bar{\eta}$, both CKMfitter and UTfit updated their results in Refs. [27, 28]. However, the angle-only-fit has not been updated since Lattice 2015. The global unitarity triangle (UT) fits of both CKMfitter and UTfit use ε_K and $|V_{cb}|$ as input parameters to determine Wolfenstein parameters $\bar{\rho}$ and $\bar{\eta}$. Hence, using them to evaluate ε_K leads to unwanted correlations through ε_K and $|V_{cb}|$. In contrast, the angle-only-fit (AOF) results have no correlation with ε_K and $|V_{cb}|$. Hence, we use the AOF results in this paper.

For the QCD corrections η_{cc}, η_{ct}, and η_{tt}, we use the same values as in Ref. [1]. They are collected in Table 7. In particular, we use the SWME value of η_{cc} reported in Ref. [1] instead of that in Ref. [31]. This issue is well explained in Ref. [1]. One reason is that the size of the NNLO correction is already a conservative estimate for the truncation error of the NNNLO level in perturbation theory. Another reason is that the SWME result is consistent with that of Ref. [32].

In Table 8, we summarize remaining input parameters. They are the same as those in Ref. [1] except for the charm quark mass $m_c(m_c)$. For the charm quark mass, we use the HPQCD result reported in Ref. [35].

3. **Current status of ε_K**

Here, we present the results for ε_K evaluated directly from the SM with the lattice QCD inputs.
\[|\varepsilon_K| = 1.69 \pm 0.17 \text{ for exclusive } V_{cb} \text{ (lattice QCD)} \] (3.1)
\[|\varepsilon_K| = 2.10 \pm 0.21 \text{ for inclusive } V_{cb} \text{ (heavy quark expansion)} \] (3.2)
\[|\varepsilon_K| = 2.228 \pm 0.011 \text{ (experimental value)} \] (3.3)

Here, exclusive \(V_{cb} \) represents the theoretical evaluation of \(\varepsilon_K \) with the FLAG-2016 \(B_K \), AOF for the Wolfenstein parameters, and exclusive \(|V_{cb}| \) that corresponds to ex-combined in Table 2. We observe 3.2\(\sigma \) tension in the exclusive \(V_{cb} \) channel (lattice QCD), and no tension in the inclusive \(V_{cb} \) channel (heavy quark expansion; QCD sum rules).

Acknowledgments

We thank R. Van de Water for helpful discussion on \(V_{cb} \). The research of W. Lee is supported by the Creative Research Initiatives Program (No. 20160004939) of the NRF grant funded by the Korean government (MEST). W. Lee would like to acknowledge the support from the KISTI supercomputing center through the strategic support program for the supercomputing application research (No. KSC-2014-G3-003). The computations were carried out in part on the DAVID GPU clusters at Seoul National University.

References

Weonjong Lee

[18] https://indico.mitp.uni-mainz.de/event/48/contribution/5/material/slides/0.pdf.