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passes all the tests known up to date and, therefore, should be currently considered the only
reliable method.
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The τ is the only lepton capable of decaying into hadrons. This makes it a potentially clean
experimental environment to study QCD and, particularly, to determine the strong coupling αs.
Furthermore, its mass mτ ≃ 1.8GeV is both large enough to allow the use of perturbation theory
(supplemented by nonperturbative corrections), and small enough to potentially compete in preci-
sion with other determinations of αs, carried out at much higher energies such as the Z mass. This
is because the relative error in αs at the Z mass, ε(MZ), gets squeezed from its value at the τ scale
by ε(MZ) ≃ ε(mτ)(αs(MZ)/αs(mτ)). Since no lunch is free, however, the price to pay at the τ
scale is that nonperturbative corrections are non-negligible, and it is absolutely essential to bring
them under good theoretical control. Otherwise, the determination of αs becomes unreliable.

In 1992, Braaten, Narison and Pich [1], followed by LeDiberder and Pich [2], building on
previous work [3]-[10], showed how Perturbation Theory (PT) and the Operator Product Expansion
(OPE) could potentially be used to produce a precise determination of αs(mτ). This method has
been the traditional choice until recently, and has been applied in a series of analyses based on the
hadronic data collected in the OPAL [11] and the ALEPH [12, 13] experiments.1

The error originally estimated for αs(mτ) in 1992 ranged from 10%−30% [1]; that currently
claimed in Ref. [13] is roughly 2% (in CIPT). Of course, most of the improvement in precision
is due to the more accurate data presently available. This improvement in experimental precision,
however, should also be accompanied by an improvement in the theoretical description used to
analyze these data. The theoretical framework used in these traditional analyses has, however,
remained largely the unmodified version of the original one from Ref. [2].

This motivated us in a series of papers [16]-[20] to take a fresh look at the assumptions un-
derlying these traditional determinations of αs(mτ). The outcome of these investigations is a new
method to analyze the hadronic τ data. This led to a new, significantly lower result for αs(mτ) in
Ref. [21]. This calls, of course, for a closer investigation.

Here we would like to point out some of the main differences between the two methods. In
disagreement with Ref. [22] our conclusion will be that the method discussed in Ref. [22] has
fundamental flaws and, therefore, that the method of Ref. [21] is the only reliable one currently
available. Due to space limitations, only a brief summary of our results will be presented. The
reader is referred to Ref. [23] for a more detailed account.

All analyses start with the following equation [1]-[10]:

1
s0

∫ s0

0
dsw(s/s0)ρ(1+0)

V/A (s) (1)

=− 1
2πis0

∮
|s|=s0

dsw(s/s0)Π(1+0)
OPE,V/A(s)−

1
s0

∫ ∞

s0

dsw(s/s0)
1
π

Im∆V/A(s) ,

where w(x) is a convenient polynomial, ρ(1+0)
V/A (s) is the 1+0 spin combination for the vector/axial

vector spectral function, Π(1+0)
OPE,V/A(s) is the OPE approximation to the corresponding correlator,

and Im∆V/A(s) contains the so-called Duality Violations (DVs) [24]. This DV term is supposed to
compensate for the lack of convergence of the OPE on the Minkowski axis and, in more physical
terms, is responsible for the mismatch between the short-distance quark-gluon description and

1The latest ALEPH data were corrected in Ref. [13] after an error in its covariance matrices was detected in
Ref. [14].
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the long-distance hadronic description of the correlator Π(1+0)
OPE,V/A(s). This correlator contains the

perturbative series (and the nonperturbative condensates) and depends on αs, whereas ρ(1+0)
V/A (s)

contains the experimental data. The maximum value of s0 is m2
τ .

It is clear that Eq. (1) can only determine αs after one assumes something about Im∆V/A(s).
The traditional method [1, 2], in the most recent incarnation of Refs. [13, 22], chooses the polyno-
mial w(s/s0) from the set wkℓ(x) = (1−x)k+2xℓ(1+2x), with (kℓ) ∈ {(00),(10),(11),(12),(13)}.
The hope is that, because these polynomials have a zero on the Minkowski axis of degree two or
three, the contribution from the OPE on the region of the contour |s|= s0 touching this axis, where
the OPE is not valid, will be suppressed enough not to require any compensating term in the form
of Im∆V/A(s). To make this possibility more likely, s0 is chosen equal to m2

τ , since the OPE works
better at higher scales. With all these choices, the net result is that Im∆V/A(s) is assumed to be zero.
However, the use of the above set wkℓ(x) in Eq. (1), at the single value s0 = m2

τ , yields only 5 data
points, whereas these polynomials contain powers of s all the way up to s7. Cauchy’s theorem then
tells us that all condensates, CD, from the OPE will contribute to Eq. (1) for D = 4,6,8,10,12,14
and 16. Together with αs, that makes 8 unknowns for 5 data points. In order to be able to do a fit
with one degree of freedom, the condensates with D = 10,12,14 and 16 are set to zero by hand.
The bottom line is that one has to make two assumptions for the traditional method to be opera-
tional: negligible DVs and a truncation of higher-dimension OPE terms. These two assumptions
are actually related [25].

In contrast, the method of Ref. [21] chooses the following explicit parametrization for ρDV
V/A(s)

≡ 1
π Im∆V/A(s):

ρDV
V/A(s) = e−δV/A−γV/As sin(αV/A +βV/As) , s ≥ smin . (2)

which is based on large-Nc and Regge considerations [15]-[18]. For this reason we will refer to
the method of Ref. [21] as the "DV model" and to the method of Ref. [22] as the "truncated-OPE
(TOPE) model" . Notice that the truncated OPE model makes the choice δV/A = ∞ from the outset.

It turns out that the DV model allows us to avoid the above OPE truncation, making a self-
consistent fit possible in a window smin ≤ s0 ≤ m2

τ , in which αs(mτ),C6,8
2 and the 8 DV parameters

δV/A,γV/A,αV/A,βV/A are determined from the data. The fits also determine smin ≃ 1.55GeV2 as
an optimal choice. Consistent results were obtained in Ref. [21] from a series of fits of this type.
However, the results obtained for αs(mτ) were systematically ∼ 0.020− 0.025 lower than in the
TOPE model. It is important to clarify the underlying cause for this difference.

Two recent analysis [22, 23] have taken up this task. In Ref. [22] a very thorough survey of
a variety of fits based on the TOPE strategy has been performed checking for the stability of the
result with respect to the inclusion of the first higher term of the OPE neglected in the earlier fits.
Of course, once a new term is included, the number of degrees of freedom is zero, the value of the
fit quality vanishes and one no longer has a real "fit". However, errors can still be propagated, and
Ref. [22] finds results which display a certain stability with respect to this change. This stability is
then taken by the authors of Ref. [22] as a proof for the robustness and reliability of the results.

2C2 is negligible and the weights are deliberately chosen to avoid C4, because the presence of this condensate spoils
the perturbative convergence [26].
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Figure 1: V +A non-strange spectral function. Left panel: fake data, generated as described
in the text, as a function of s. Right panel: true ALEPH data [13] as a function of s. The fake
data have been generated for s ≥ 1.55 GeV2; below this value the two data sets are the same.

It is important to realize, however, that this condition of stability is a necessary, but not suffi-
cient one. It is easily demonstrated that other choices for the higher dimension CD exist which are
reasonable from the point of view of what one could expect in QCD, but which produce a different
result for αs(mτ), one which is equally stable when tested as above [23]. This means the values
assumed for the higher CD affect in a significant way the αs(mτ) extracted from fits using the TOPE
model strategy. The tests conducted in Ref. [22] are thus inconclusive.

Is there a test that discriminates between the DV model strategy and the TOPE model strategy
for determining αs(mτ)? The answer is yes. It consists of fitting a set of fake data for the V +A
spectral function3 constructed with a known value for αs(mτ)(= 0.312, using CIPT), and the DV
parametrization in Eq. (2)4 by generating a multivariate gaussian distribution at the ALEPH bin
energies with central values given by the above parameters and with fluctuations controlled by the
real-data covariance matrix. The true and fake V +A data are compared in Fig. 1. They look
remarkably similar.

If the TOPE model strategy fails to find the correct model value for αs(mτ), it will have been
shown to be unreliable and hence not safely usable for the real data either. This is in fact what has
been found [23]. The TOPE model strategy extracts a value, αs(mτ) ≃ 0.334(4), many standard
deviations away from the correct model result, 0.312. The DV model strategy, on the other hand,
can easily reproduce the right value of αs(mτ).

One could remark that it was easy for the DV model to get the right answer because it was the
DV model that was used as the basis for the construction of the fake data. While this is of course
true, the above exercise shows clearly that, by declaring DVs and the high-dimension CD to vanish,
the TOPE model leaves itself in general unable to extract the correct value of αs(mτ), making it
unreliable. The ALEPH data could have sizeable DVs and the TOPE model strategy would never
detect them. On the other hand, the DV model is able to detect the amount of DVs through the
parametrization (2).

3According to common lore, this is the combination most favorable for the TOPE model.
4The precise values for the parameters can be found in Ref. [23].
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Figure 2: Blow-up of the large-s region of the V +A non-strange spectral function. Black
dashed line: the perturbative (CIPT) representation of the model. Blue curve: full model
representation, including DVs. Blue dot-dashed curves: separate V and A parts of the model
spectral function.

Based on our DV model fits to the ALEPH data, are the DVs large or small? Fig. 2 shows the
V +A ALEPH data (red points) together with our DV model fit (solid blue line), the perturbation
theory curve (in CIPT, black dashed line) and the corresponding model fits for V (blue dot-dashed
curve) and A (blue dashed curve). As one can see, the oscillations in the data points below s =
2.3 GeV2 are not small and show no sign of a strong damping. Above this value the data errors
are too large to tell. Notice that the difference between the black dashed line (perturbation theory)
and an horizontal line at 2π2ρV+A(s) = 1 (the parton model) represents the dynamical contribution
from which the value of αs(mτ) is extracted in QCD. This difference is in no way small relative
to the oscillations depicted by the blue solid line (DVs) which, by the way, in the region above
s & 1.7 GeV2, happen to be largest precisely at m2

τ , where the TOPE model declares them to be
zero.

In summary, the analysis of Ref. [23] shows the TOPE model strategy is unreliable and, con-
sequently, should not be used to determine αs(mτ). The DV model strategy, on the other hand,
passes all the tests known up to date5 and obtains the following values from the ALEPH data [23]:

αs(mτ) = 0.296(10) (FOPT) , (3)

αs(mτ) = 0.310(14) (CIPT) . (4)

5For a detailed refutation of the criticism of our approach in Ref. [22], we refer to Sec. V.B of Ref. [23].
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