The X (3872) and the search for its bottomonium counterpart at the LHC

K. Toms*
University of New Mexico, USA
E-mail: ktoms@cern.ch

We present results on X (3872) particle studies at three LHC experiments: ATLAS, CMS, and LHCb. Production cross section measurements are reported, as well as determination of the $X(3872)$ quantum numbers. The search of the $X(3872)$ bottomonium counterpart is also described.

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

[^0]
1. Introduction

The $X(3872)$ particle was first discovered by the Belle experiment in 2003 in the transition $B^{ \pm} \rightarrow$ $K^{ \pm} X\left(\rightarrow J / \psi \pi^{+} \pi^{-}\right)$[1] and soon was confirmed by many experiments [2]. The $X(3872)$ state is narrow, with mass close to the $D^{0} \bar{D}^{0 *}$ threshold and decays to the $\rho^{0} J / \psi$ and $\omega J / \psi$ final states with comparable branching fractions, thus violating isospin symmetry, so it cannot be a simple $c \bar{c}$ state. The nature of the state remains unclear, and there are many theoretical developments that suggest different models to describe the $X(3872)$ structure, see for example [3]. Heavy quark symmetry implies the existence of a hidden-beauty partner, X_{b}, which should be produced in $p p$ collisions.

In this paper we present the results by three LHC [4] experiments: ATLAS [5], CMS [6], and LHCb [7], related to the studies of $X(3872)$ properties and search for its bottomonium counterpart.

2. Search for X_{b} at ATLAS and CMS

The decay $X_{b} \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S)\left(\rightarrow \mu^{+} \mu^{-}\right)$may serve as a decay mode analogous to that in which the $X(3872)$ was discovered. CMS reported results on a search for this decay, finding no evidence for narrow states in the $10.06-10.31 \mathrm{GeV}$ and $10.40-10.99 \mathrm{GeV}$ mass ranges [8]. Upper limits on the product of cross section and branching fraction at values between 0.9% and 5.4% of the $\Upsilon(2 S)$ rate were set. The resulting plot is shown in Figure 1 right. ATLAS has performed a similar search [9] with results shown in Figure 1 left, and no evidence for new narrow states with masses in the range $10.05-10.31 \mathrm{GeV}$ and $10.40-11.00 \mathrm{GeV}$ was found. Separate fits to the $\Upsilon\left(1^{3} D_{J}\right)$ triplet, $\Upsilon(10860)$, and $\Upsilon(11020)$ also reveal no significant signals.

Figure 1: Left: Observed $95 \% \mathrm{CL}_{S}$ upper limits (solid line) on the relative production rate $R=(\sigma B) /(\sigma B)_{2 S}$ of a hypothetical X_{b} parent state decaying isotropically to $\pi^{+} \pi^{-} \Upsilon(1 S)$, as a function of mass. The median expectation (dashed) and the corresponding $\pm 1 \sigma$ and $\pm 2 \sigma$ bands (green and yellow respectively) are also shown. The bar on the right shows typical shifts under alternative X_{b} spin-alignment scenarios, relative to the isotropic ("FLAT") case shown with the solid points [9]. Right: Upper limits at the 95% confidence level on R, the production cross section for the X_{b} times its branching fraction to $\Upsilon(1 S) \pi^{+} \pi^{-}$relative to the $\Upsilon(2 S)$, as a function of the X_{b} mass. The solid curve shows the observed limits, while the dashed curve represents the expected limits in the absence of a signal, with the two shaded regions giving the ± 1 and ± 2 standard deviation uncertainties on the expected limits. The measured value for the analogous $X(3872)$ to $\psi(2 S)$ ratio of 6.56% is shown by the dotted line [8].

3. Production measurement of $\psi(2 S)$ and $X(3872)$ at ATLAS and CMS

A cross-section measurement of promptly produced X (3872) was performed by CMS [10] at $\sqrt{s}=7$ TeV as a function of transverse momentum p_{T}. It was done in a kinematic range in which the $X(3872)$ had $\left(10<p_{\mathrm{T}}<50\right) \mathrm{GeV}$ and rapidity $|y|<1.2$. The ratio of the $X(3872)$ and $\psi(2 S)$ cross sections times their branching fractions into $J / \psi \pi^{+} \pi^{-}$was measured as a function of p_{T}. It has been shown that the nonrelativistic QCD (NRQCD) prediction [11] for prompt X (3872) production, assuming a $D^{0} \bar{D}^{* 0}$ molecule, is too high, although the shape of the p_{T} dependence was described fairly well. A later interpretation of
the $X(3872)$ as a mixed $\chi_{c 1}(2 P)-D^{0} \bar{D}^{* 0}$ state, where the $X(3872)$ is produced predominantly through its $\chi_{c 1}(2 P)$ component, was adopted in conjunction with the next-to-leading-order (NLO) NRQCD model and fitted to CMS data, showing a good agreement [12]. ATLAS has performed a similar study at $\sqrt{s}=8 \mathrm{TeV}$ [13] with the $J / \psi \pi^{+} \pi^{-}$candidates having $\left(10<p_{\mathrm{T}}<70\right) \mathrm{GeV}$ and $|y|<0.75$. Two models of the lifetime dependence of the non-prompt production are considered: a model with a single effective lifetime, and an alternative model with two distinctly different effective lifetimes. The two models give compatible results for the prompt and non-prompt differential cross sections of the $\psi(2 S)$ and $X(3872)$. For the single-lifetime model, assuming that non-prompt $\psi(2 S)$ and $X(3872)$ originate from the same mix of parent b-hadrons, the following result is obtained for the ratio of the branching fractions:

$$
R_{B}^{1 \mathrm{~L}}=\frac{\mathscr{B}(B \rightarrow X(3872)+\text { any }) \mathscr{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\mathscr{B}(B \rightarrow \psi(2 S)+\text { any }) \mathscr{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=(3.95 \pm 0.32(\text { stat }) \pm 0.08(\text { sys })) \times 10^{-2},
$$

[13]. In the two-lifetime model, the two lifetimes are fixed to expected values for $X(3872)$ originating from the decays of the B_{c} and from long-lived b-hadrons, respectively, with their relative weight determined from the fits to the data. The ratio of the branching fractions R_{B} is determined from the long-lived component alone:

$$
R_{B}^{2 \mathrm{~L}}=\frac{\mathscr{B}(B \rightarrow X(3872)+\text { any }) \mathscr{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\mathscr{B}(B \rightarrow \psi(2 S)+\text { any }) \mathscr{B}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=(3.57 \pm 0.33(\text { stat }) \pm 0.11(\text { sys })) \times 10^{-2},
$$

[13]. In the two-lifetime model, the fraction of the short-lived non-prompt component in X (3872) production, for $p_{\mathrm{T}}>10 \mathrm{GeV}$, is found to be

$$
\begin{equation*}
\frac{\sigma\left(p p \rightarrow B_{c}+\text { any }\right) \mathscr{B}\left(B_{c} \rightarrow X(3872)+\text { any }\right)}{\sigma(p p \rightarrow \text { non-prompt } X(3872)+\text { any })}=(25 \pm 13(\text { stat }) \pm 2(\text { sys }) \pm 5(\text { spin })) \% \tag{3.1}
\end{equation*}
$$

[13]. The measured differential cross section for non-prompt production of the $X(3872)$ is shown in Figure 2 (right). This is compared to a calculation based on the FONLL model prediction for $\psi(2 S)$, recalculated for the $X(3872)$ using a kinematic template [13] for the non-prompt $X(3872) / \psi(2 S)$ ratio and the effective value of the product of the branching fractions $\mathscr{B}(B \rightarrow X(3872)) \mathscr{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=(1.9 \pm 0.8) \times 10^{-4}$ estimated in Ref. 3.1 based on Tevatron data [15]. This calculation overestimates the data by a factor increasing with p_{T} from about four to about eight over the p_{T} range of this measurement. The non-prompt fractions of $\psi(2 S)$ and $X(3872)$ production are shown in Figure 3. The non-prompt fraction of $X(3872)$ shows no sizeable dependence on p_{T}. This measurement agrees within uncertainties with the CMS result obtained at $\sqrt{s}=7 \mathrm{TeV}$ [10].

Figure 2: Measured cross section times branching fractions as a function of p_{T} for (left) prompt X (3872) in the ATLAS experiment [13] compared to NLO NRQCD predictions with the $X(3872)$ modelled as a mixture of $\chi_{c 1}(2 P)$ and a $D^{0} \bar{D}^{* 0}$ molecular state [12], and (right) non-prompt X (3872) compared to the FONLL [14] model prediction. Bottom plots on both left and right show theory to data ratio.

Figure 3: Measured non-prompt fractions for (left) $\psi(2 S)$ and (right) $X(3872)$ production in the ATLAS experiment [13], compared to CMS results [10] at $\sqrt{s}=7 \mathrm{TeV}$. The blue circles are the results reported by ATLAS, while the green squares show CMS results [10, 16].

4. Determination of the $X(3872)$ quantum numbers at $\mathbf{L H C b}$

Early constraints on the $X(3872)$ quantum numbers were set by CDF [17] and have restricted the options to 1^{++}and 2^{-+}. LHCb's 2013 full angular analysis [18] settled on 1^{++}, but that analysis assumed that the lowest orbital angular momentum process dominated the decay. A new analysis [19] described below removed that assumption. The analysis uses $3 \mathrm{fb}^{-1}$ of $\sqrt{s}=7 \mathrm{TeV}$ and $\sqrt{s}=8 \mathrm{TeV}$ data.

The $X(3872)$ signal is sought in the decay $B^{+} \rightarrow X(3872) K^{+}$with $X(3872) \rightarrow \rho^{0} J / \psi, \rho^{0} \rightarrow \pi^{+} \pi^{-}$, and $J / \psi \rightarrow \mu^{+} \mu^{-}$. The fit yields 1011 ± 38 signal events over a background of 1468 ± 44 in the $\Delta \mathrm{M}$ range of (725-825) MeV. The X (3872) mass resolution is 2.8 MeV . The signal purity is 80% within 2.5 standard deviations around the peak.

Angular correlations in the B^{+}decay chain are analyzed using an unbinned maximum-likelihood fit to determine the $X(3872)$ quantum numbers and orbital angular momentum. The probability density function (\mathscr{P}) for each $J^{P C}$ hypothesis, J_{X}, is defined in the five-dimensional angular space $\Omega \equiv$ $\left(\cos \theta_{X}, \cos \theta_{\rho}, \Delta \phi_{X, \rho}, \cos \theta_{J / \psi}, \Delta \phi_{X, J / \psi}\right)$, where $\theta_{X}, \theta_{\rho}$ and $\theta_{J / \psi}$ are the helicity angles in the $X(3872), \rho^{0}$ and J / ψ decays, respectively, and $\Delta \phi_{X, \rho}$ and $\Delta \phi_{X, J / \psi}$ are the angles between the decay planes of the $X(3872)$ particle and its decay products. The quantity \mathscr{P} is the normalized product of the expected decay matrix element (\mathscr{M}) squared and the reconstruction efficiency $(\varepsilon), \mathscr{P}\left(\Omega \mid J_{X}\right)=\left|\mathscr{M}\left(\Omega \mid J_{X}\right)\right|^{2} \varepsilon(\Omega) / I\left(J_{X}\right)$, where $I\left(J_{X}\right)=\int\left|\mathscr{M}\left(\Omega \mid J_{X}\right)\right|^{2} \varepsilon(\Omega) d \Omega$. The efficiency is averaged over the $\pi^{+} \pi^{-}$mass of the $X(3872) \rightarrow \rho^{0} J / \psi$, $\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay. The lineshape of the ρ^{0} resonance can change slightly depending on the $X(3872)$ spin hypothesis. The effect on $\varepsilon(\Omega)$ is very small and is neglected. The angular correlations are obtained using the helicity formalism,

$$
\begin{aligned}
\left|\mathscr{M}\left(\Omega \mid J_{X}\right)\right|^{2}=\sum_{\Delta \lambda_{\mu}=-1,+1} \mid & \sum_{\lambda_{J / \psi}, \lambda_{\rho}=-1,0,+1} A_{\lambda_{J / \psi}, \lambda_{\rho}} D_{0, \lambda_{J / \psi}-\lambda_{\rho}}^{J_{X}}\left(0, \theta_{X}, 0\right)^{*} \\
& \left.D_{\lambda_{\rho}, 0}^{1}\left(\Delta \phi_{X, \rho}, \theta_{\rho}, 0\right)^{*} D_{\lambda_{J / \psi}, \Delta \lambda_{\mu}}^{1}\left(\Delta \phi_{X, J / \psi}, \theta_{J / \psi}, 0\right)^{*}\right|^{2}
\end{aligned}
$$

where the λ 's are particle helicities, $\Delta \lambda_{\mu}=\lambda_{\mu^{+}}-\lambda_{\mu^{-}}$, and the $D_{\lambda_{1}, \lambda_{2}}^{J}$ are Wigner functions. The helicity couplings, $A_{\lambda_{J / \psi}, \lambda_{\rho}}$, are expressed in terms of the $L S$ couplings, $B_{L S}$, through Clebsch-Gordan coefficients, where L is the orbital angular momentum between the ρ^{0} and the J / ψ mesons, and S is the sum of their spins. The possible values of L are constrained by parity conservation, $P_{X}=P_{J / \psi} P_{\rho}(-1)^{L}=(-1)^{L}$. In this analysis all L values are allowed. Values of J_{X} up to four are analyzed. Since the orbital angular momentum in the B^{+}decay equals J_{X}, high values are suppressed by the angular momentum barrier. The set of possible complex $B_{L S}$ amplitudes, which are free parameters in the fit, is denoted as α. The function to be minimized is $-2 \ln \mathscr{L}\left(J_{X}, \alpha\right) \equiv-s_{w} 2 \sum_{i=1}^{N_{\text {data }}} w_{i} \ln \mathscr{P}\left(\Omega_{i} \mid J_{X}, \alpha\right)$, where $\mathscr{L}\left(J_{X}, \alpha\right)$ is the unbinned likelihood and $N_{\text {data }}$ is the number of selected candidates. The background is subtracted using the $s P l o t$ technique [20]
by assigning a weight, w_{i}, to each candidate based on its ΔM value. No correlations between ΔM and Ω are observed. Prompt production of $X(3872)$ in $p p$ collisions gives negligible contribution to the selected sample. Statistical fluctuations in the background subtraction are taken into account in the log-likelihood value via a constant scaling factor, $s_{w}=\sum_{i=1}^{N_{\text {data }}} w_{i} / \sum_{i=1}^{N_{\text {data }}} w_{i}{ }^{2}$. The 1^{++}hypothesis gives the highest likelihood value. Projections of the data and of the fit \mathscr{P} onto individual angles show good consistency with the 1^{++}assignment as is illustrated in Fig. 4 left. Inconsistency with the other assignments is apparent when correlations between various angles are examined. For example, the data projection onto $\cos \theta_{X}$ is consistent only with the 1^{++}fit projection after requiring $\left|\cos \theta_{\rho}\right|>0.6$ (see Fig. 4 right), while inconsistency with the other quantum number assignments is less clear without the $\cos \theta_{\rho}$ requirement.

In summary, the analysis confirms that the eigenvalues of total angular momentum, parity, and chargeconjugation of the $X(3872)$ state are 1^{++}. These quantum numbers are consistent with those predicted by the molecular or tetraquark models and with the $\chi_{c 1}\left(2^{3} \mathrm{P}_{1}\right)$ charmonium state [21], possibly mixed with a molecule [22]. Other charmonium states are excluded. No significant D-wave fraction is found, with an upper limit of 4% at 95% C.L. The S-wave dominance is expected in the charmonium or tetraquark models, in which the $X(3872)$ state has a compact size. An extended size, as that predicted by the molecular model, implies more favorable conditions for the D wave. However, conclusive discrimination among models is difficult because quantitative predictions are not available.

Figure 4: Left: Background-subtracted distributions of all angles for the data (points with error bars) and for the 1^{++}fit projections (solid histograms). Right: Background-subtracted distribution of $\cos \theta_{X}$ for candidates with $\left|\cos \theta_{\rho}\right|>0.6$ for the data (points with error bars) compared to the expected distributions for various $X(3872) J^{P C}$ assignments (solid histograms) with the $B_{L S}$ amplitudes obtained by the fit to the data in the five-dimensional angular space. The fit displays are normalized to the observed number of signal events in the full angular phase space.

References

[1] S.-K. Choi, et al. (Belle Collaboration), Phys. Rev. Lett. 91 (2003) 262001, arXiv:hep-ex/0309032v2.
[2] B. Aubert, et al. (BaBar Collaboration), Phys. Rev. D 71 (2005) 071103, arXiv:hep-ex/0406022.
D. Acosta, et al. (CDF Collaboration), Phys. Rev. Lett. 93 (2004) 072001, arXiv:hep-ex/0312021.
V. Abazov, et al. (D0 Collaboration), Phys. Rev. Lett. 93 (2004) 162002, arXiv:hep-ex/0405004.
[3] E. S. Swanson, Phys. Lett. B 588 (2004) 189-195, arXiv:hep-ph/0311229.
L. Maiani, F. Piccinini, A. Polosa, V. Riquer, Phys. Rev. D 71 (2005) 014028, arXiv:hep-ph/0412098.
D. Ebert, R. Faustov, V. Galkin, Phys. Lett. B 634 (2006) 214-219, arXiv:hep-ph/0512230.
[4] L. Evans and P. Bryant (editors) JINST 3 (2008) S08001.
[5] ATLAS Collaboration, JINST 3 (2008) S08003.
[6] CMS Collaboration, JINST 3 (2008) S08004.
[7] LHCb collaboration, A. A. Alves Jr. et al., JINST 3 (2008) S08005.
LHCb collaboration, R. Aaij et al., Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.
[8] CMS Collaboration, Phys. Lett. B 727 (2013) 57-76, arXiv:1309.0250.
[9] ATLAS Collaboration, Phys. Lett. B740 (2015) 199-217, arXiv:1410.4409.
[10] CMS Collaboration, JHEP 04 (2013) 154, arXiv:1302.3968.
[11] P. Artoisenet and E. Braaten, Phys. Rev. D 81 (2010) 114018, arXiv:0911.2016.
[12] C. Meng, H. Han and K.-T. Chao, (2013), arXiv:1304.6710.
[13] ATLAS Collaboration, arXiv:1610.09303, submitted to JHEP.
[14] M. Cacciari et al., JHEP 10 (2012) 137, arXiv:1205.6344.
[15] G. Bauer, Int. J. Mod. Phys. A 20 (2005) 3765-3767, arXiv:hep-ex/0409052.
[16] CMS Collaboration, JHEP 02 (2012) 011, arXiv:1111.1557.
[17] A. Abulencia et al., (CDF Collaboration), Phys. Rev. Lett. 96 (2006) 102002, arXiv:hep-ex/0512074.
[18] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110 (2013) 222001, arXiv:1302.6269.
[19] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 92 (2015) 011102, arXiv:1504.06339.
[20] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.
[21] N. N. Achasov and E. V. Rogozina, Mod. Phys. Lett. A, 30 (2015) 1550181, arXiv:1501.03583.
[22] C. Hanhart, Y. S. Kalashnikova, and A. V. Nefediev, Eur. Phys. J. A47 (2011) 101, arXiv:1106.1185.

[^0]: *Speaker.
 ${ }^{\dagger}$ On behalf of the ATLAS, CMS, and LHCb collaborations.

