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1. Top-pair cross sections and differential distributions

QCD corrections to tf production are quite substantial. Soft-gluon corrections are a very im-
portant subset of the corrections and they approximate exact results very well. In fact, the higher-
order results through NNLO have been very well predicted in the past by the evaluation of the
soft-gluon contributions [1]. These soft corrections were calculated from resummation at NNLL
accuracy for the double-differential cross section. Approximate N°LO (aN’LO) predictions for
cross sections were later derived [2] by adding the third-order soft-gluon corrections.

The aN>LO 7 cross sections and top-quark differential distributions in p7 and rapidity were
calculated in [2], and numerical results were presented using MSTW?2008 NNLO pdf [3]. The
cross sections increase somewhat if one uses the more recent MMHT2014 pdf [4]. For a top quark
mass m; = 173.3 GeV the aN*LO total cross section using MMHT2014 NNLO pdf is 826724 1% pb
at 13 TeV LHC energy and 975f%gfé8 pb at 14 TeV LHC energy, where the indicated uncertainties
are from scale variation by a factor of two around y = my;, and from the pdf at 68% C.L.
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Figure 1: Top-quark aN3>LO pr (left) and rapidity (right) distributions at LHC energies.

In Fig. 1 we plot theoretical results, including scale variation, for the aN3LO differential
distributions in transverse momentum and rapidity of the top quark at 7, 8, 13, and 14 TeV LHC
energies.

In Fig. 2 we plot theoretical results for the aN*LO differential distributions in transverse
momentum of the top quark at 8 and 13 TeV energies and compare with CMS data [5], finding
excellent agreement between theoretical predictions and data in both cases.

In Fig. 3 we plot theoretical results for the aN*LO normalized differential distributions in
rapidity of the top quark and compare with CMS data at 8 and 13 TeV energies [6], again finding
excellent agreement between theory and data.

Higher-order corrections are very sizable for the ¢ total cross sections and also for the dif-
ferential distributions. Given the large contributions from higher orders and the relatively slow
convergence of the perturbative series, it is clear that NNLO calculations are not enough; the inclu-
sion of aN3LO contributions is needed for truly precision top-quark physics.
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Figure 2: Top-quark aN>LO pr distributions at 8 TeV (left) and 13 TeV (right) LHC energies compared
with CMS data [5].
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Figure 3: Top-quark aN>LO rapidity distributions at 8 TeV (left) and 13 TeV (right) LHC energies compared
with CMS data [6].

2. Single-top cross sections and differential distributions

Single-top production processes include the z-channel via gb — ¢t and gb — §'t; the s-channel
via gg' — bt; and associated tW production via bg — tW ™.

The aNNLO cross sections for all three processes were calculated in Ref. [7], and results are
plotted in Fig. 4 with MSTW2008 pdf. We observe excellent agreement of theory with Tevatron
and LHC data for the z-channel [8, 9], the s-channel [10], and the tW channel [11].

The numbers increase a bit when MMHT2014 pdf are used. For the ¢-channel at the 13 TeV
LHC using MMHT2014 NNLO pdf [4] and m, = 173.3 GeV, we find cross sections of 1381’? +2
pb for the top and 83ij =+ 1 pb for the antitop, giving 2213 =+ 3 pb for the sum. At 14 TeV we find
157"} +2 pb for the top, 9577 + 1 pb for the antitop, and 2525 + 3 pb for the sum.

For the s-channel at 13 TeV LHC energy with MMHT2014 pdf we find cross sections of
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Figure 4: aNNLO single-top cross sections in z-channel, s-channel, and tW processes compared with Teva-
tron [8] and LHC [9, 10, 11] data at various energies.

7.15£0. 13f8:{2 pb for the top and 4.14 £0.05£0.10 pb for the antitop, giving 11.294+0.18+:0.26
pb for the sum. At 14 TeV we find 7.83 £0.14 £0.18 pb for the top, 4.60+0.0510.11 pb for the

antitop, and 12.43 £0.19 £ 0.29 pb for the sum.

For tW™ production we find a cross section at 13 TeV of 36.34+0.9+0.9 pb and at 14 TeV of
42.8+ 1.0+ 1.1 pb with MMHT2014 pdf. The numbers are the same for fW ™ production.
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Figure 5: aNNLO top-quark normalized pr distributions in z-channel production at LHC energies (left) and
comparison to CMS data [12] at 8 TeV energy (right).

In Fig. 5 we plot the aNNLO top-quark normalized pr distributions in #-channel production
at LHC energies (left plot) and compare with CMS data [12] at 8 TeV (right plot).
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3. Cusp anomalous dimension

The cusp anomalous dimension is an essential ingredient in higher-order calculations and
resummations of soft-gluon contributions in perturbative cross sections. In particular, it is the
simplest soft anomalous dimension, and a component of soft anomalous dimensions for more
complicated color processes, such as ¢f production. Its perturbative expansion can be written as
Ceusp = ::l(as/n)”l"(") [13, 14, 15, 16]. Some diagrams are shown in Fig. 6.

LX< 44K d

Figure 6: Some of the one-loop, two-loop, and three-loop diagrams for the cusp anomalous dimension.

The cusp angle is = cosh™! (vi-vj/y /v%v?) where v; and v; are heavy-quark velocity vectors.
We have I') = Cr (6 coth — 1) and [14]

K 1 03 .
r@ — 2F(1>+2CFCA{1+§2+92—coth9 [C29—|—92+3+L12<1—e_29)}

+coth? |:—C3+C29+6;+6Liz (6_29) +Li3 (e_ze)} } .

The three-loop result was first derived in [15]. In Ref. [16] it was expressed in the form

r® = c® 4 KO 4 g {ﬁz) _ Kr(l)}
2

where C®) was given in terms of ordinary polylogarithms.
From the structure of I'cyp through three loops, an n-loop conjecture was put forth in [16]:

n—1)!

m_ =DV sk
=L et ke

Simple yet excellent numerical approximations to the exact results can be derived. We find,
for ny = 5 and with = tanh(6/2), the simple formulas [16]

Tihox(B) = —0.38649 2 + 172704 T (B); Theox(B) = 0.09221 B> 4-2.80322 TV (B).

In Fig. 7 we plot the cusp anomalous dimension and its approximations through third order.
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