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I give an overview of recent progress in the simulation of final states involving top-quarks and
vector bosons pair. First I’ll discuss the recently found solutions needed to simulate fully dif-
ferential top pair production (pp→ bb̄+4 leptons) at NLO+PS accuracy, retaining off-shellness
and interference effects exactly. In the second part, I’ll review the MiNLO (Multi-scale Improved
NLO) method, and then show a recent application, namely the simultaneous NLO+PS description
of W+W− and W+W−+1 jet production.
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In this article I will review a couple of recent results on the inclusion of higher-order QCD
corrections to the Monte Carlo simulation of final states involving top-pair and heavy electroweak
bosons. In section 1 I will focus on the recent progress achieved in the matching of QCD NLO
corrections with parton shower simulations (NLO+PS) for the process pp→W+W−bb̄, whereas
in section 2 I will discuss the NLO+PS merging of W+W− and W+W−+1 jet production using the
MiNLO method.1

1. top-pair production

It is known that having an accurate simulation of the process pp→W+W−bb̄ is important
for several reasons at the LHC, for instance to measure the top quark mass, or to have an unified
treatment of tt̄ and the so-called “single-top Wt” production.

At fixed order in QCD, W+W−bb̄ hadronic production is very well known and much studied.
Despite the fully differential cross section has been known for several years at NLO [1, 2, 3, 4,
5], with the exception of a first study appeared in [6], Monte Carlo NLO+PS event generators
addressing all the issues related to the complete simulation of this final state started to be available
only recently in the POWHEG approach [7, 8, 9]. In the rest of this section I’ll focus on these issues
(and solutions thereof) within the POWHEG approach, although substantial work in this direction is
also pursued within the MC@NLO matching scheme, and complete results for single-top t-channel
production in the 4-flavour scheme were published in ref. [10].

The problem with the simulation of W+W−bb̄ production and the inclusion of finite width
effects can be stated as follows: unless special care is taken, the intermediate top-quark virtuality is
not preserved among different parts of the computation, leading to the evaluation of matrix elements
at phase space points which have different top virtualities. When this happens, three problems will
in general occur:

1. at the level of computing NLO corrections with a subtraction method, the cancellation of
collinear singularities associated to gluon emission off final-state b-quarks can become deli-
cate, eventually failing when approaching the narrow-width limit.

2. when the hardest radiation is generated in POWHEG, the phase-space region associated to
final-state gluon emission off the b-quark is handled by a mapping that, in general, does not
preserve the virtuality of the intermediate resonance. Unless m2

bg � ΓtEbg, real and Born
matrix elements (R and B, respectively) will not be on the resonance peak at the same time,
hence the ratio R/B in the POWHEG Sudakov can become large when R is on peak and B is
not, yielding a spurious “Sudakov suppression”.

3. further problems can arise during the parton-showering stage: from the second emission on-
ward, the shower should be instructed to preserve the mass of the resonances. This could be
done easily if there was an unique mechanism to “assign” the radiation to a given resonance.
For processes where interference(s) is(are) present, no obvious choice is possible.

1Unless otherwise stated, throughout this document, we indicate with “W” the lepton-neutrino final-state pair arising
from a W bosons, i.e. W bosons are treated as unstable, have a finite width and they decay leptonically.
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An intermediate solution to the previous issues was presented in ref. [7], where a fully con-
sistent NLO+PS simulation for W+W−bb̄ production was obtained in the narrow-width limit, and
off-shellenss and interference effects were implemented in an approximate way. I refer to the orig-
inal paper, or to the review [11], for more details. Here it suffices to say that, by using the narrow-
with approximation to compute NLO corrections, production and decay can be clearly separated
(no interference arises), thereby allowing a non-ambiguous “resonance assignment” for final-state
radiation, as well as the use of an improved (“resonance aware”) subtraction method, where radia-
tion in the decay is generated by first boosting momenta in the resonance rest-frame. In this way,
B and R are always evaluated with the same virtuality for the intermediate resonance, so that the
subtraction can be safely performed, and no spurious Sudakov suppression can arise.

More recently, a general solution to include off-shellness and interference effects in the
POWHEG approach was proposed in ref. [8], and later applied to the W+W−bb̄ process in ref. [9],
where matrix elements were obtained using OpenLoops [12]. The main new concept introduced
in [8] is that one separates all contributions to the cross section into terms with definite resonance
structure, i.e. each term should only have peaks associated to a given resonance structure (“reso-
nance history”). For W+W−bb̄ production, for instance, one has two types of resonance histories:
one where at least one s-channel top-propagator appears (this includes both doubly- and single-
resonant contributions) and another associated to non-resonant production. By means of projectors
Π fb built by combining Breit-Wigner like functions P fb , a partition of the unit can be constructed,
so that a given Born (and virtual) partonic subprocess B can be separated into contributions B fb that
are, individually, dominated by one and only one resonance history (labeled by fb):2

B(ΦB) = ∑
fb

B fb(ΦB)≡∑
fb

Π fb(ΦB)B(ΦB), where Π fb(ΦB) =
P fb(ΦB)

∑ f ′b
P f ′b(ΦB)

. (1.1)

Since each Born matrix element is separated according to resonance histories, one needs to set-up
a similar mechanism for real matrix elements, such that, eventually, each projected real matrix ele-
ment can be associated to an unique resonance history, with a counterpart in the corresponding list
of Born’s ones. As usual, real matrix elements also need be separated according to their collinear
singularities: to this end, one requires that a collinear region αr is admitted only if the two collinear
partons both arise either from the same resonance, or from the hard interaction. This separation is
achieved schematically as

R = ∑
αr

Rαr , where Rαr =
P fr d−1(αr)

∑ f ′r (P
f ′r ∑α ′r

d−1(α ′r))
R . (1.2)

In eq. (1.2), fr denotes a given resonance history assignment for R, d(αr)→ 0 when the collinear
region αr is approached, and the sums in the denominator run only on the possible resonance
histories f ′r present in R, and on the compatible singular regions α ′r associated to a given f ′r: hence
a given Rαr becomes dominant only if the collinear partons of region αr have the smallest kt and
the corresponding resonance history fr is the closest to its mass shell.

2For simplicity we suppressed the labels Fb and Fr used in [8], which represent the “bare” structure, i.e. the flavour
of external partons of Born and real matrix elements. Moreover in [8] the symbols fb and fr represent a “full” structure,
since they label a given resonance history related to a given set of external partons, i.e. they also contain the explicit
information on the external partons, which we are suppressing in this document.
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The above prescriptions allowed to build a POWHEG generator able to simulate processes with
intermediate resonances, keeping all finite-width effects and interferences. In fact, having sepa-
rated each contribution as explained above, for the singular regions associated to a radiation in a
resonance decay, it becomes now possible to safely use the “resonance-aware” subtraction method
developed in [7], thereby avoiding the mismatches mentioned at the beginning of this section. Sim-
ilarly, because an index αr is naturally associated to the hardest radiation generated by POWHEG,
it’s possible to unambiguously assign the radiation to a given resonance, preventing the parton
shower to distort the mass of the resonances.3

The left panel of Fig. 1 shows the differences in shape of the reconstructed top peak obtained
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Figure 1: Invariant mass of the W and hardest b-jet (left panel) and transverse momentum of the hardest
b-jet (right panel), at the

√
S = 8 TeV LHC. Figures taken from ref. [9].

using three tools, namely the new generator of ref. [9] (bb̄4`), the resonance-improved generator
based on an approximate treatment of off-shell effects [7] (tt̄⊗decay), and the original genera-
tor [13] based on on-shell NLO matrix elements for tt̄ production (tt̄). As expected, the “bb̄4`” and
“tt̄⊗decay” generators are fairly consistent, especially close to the resonance peak, whereas the
“tt̄” generator shows larger deviations. The pT spectrum of the hardest b-jet is instead shown in the
right panel of fig. 1, without imposing any particular cuts. The shape difference at small pT can be
attributed to the fact that the “Wt” contribution is missing (approximate) in the “tt̄” (“tt̄⊗decay”)
generator, whereas it’s fully taken into account in the “bb̄4`” one.

2. W -boson pair production

The study of vector boson pair-production is central for the LHC Physics program. Not only is
W+W− production measured to access anomalous gauge couplings, but it’s also an important back-
ground for several searches, notably for those where the H →W+W− decay is present. For these
and other similar reasons, it is important to have flexible and fully realistic theoretical predictions

3I want to mention that another technical but crucial issue was addressed in [8], related to the computation of
soft-collinear contributions to be added to to the virtual terms. In [7], these terms were computed independently for
production and for each radiating resonance decay, and in different frames. This posed no problem, because in the
narrow-width limit no interferences are present. When interferences are present, this is clearly no longer possible,
and a substantial generalization of the subtraction scheme adopted in POWHEG was worked out in [8], leading to the
development of a new framework, dubbed POWHEG-BOX-RES.
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that allow to simultaneously model, with high accuracy, the production of W+W−, inclusively as
well as in presence of jets. The methods aiming at this task are usually referred to as “NLO+PS
merging”. NLO+PS merging for pp→VV +jet(s) was achieved using the MEPS@NLO [14, 15] and
FxFx [16, 17] methods. In this section, I’ll review the MiNLO formalism and show how it was
used to merge at NLO the processes pp→W+W− and pp→W+W−+ jet [18].

The MiNLO (Multi-scale Improved NLO) procedure [19] was originally introduced as a pre-
scription to a-priori choose the renormalization (µR) and factorization (µF ) scales in multileg NLO
computations: since these computations can probe kinematic regimes involving several different
scales, the choice of µR and µF is indeed ambiguous, and the MiNLO method addresses this is-
sue by consistently including CKKW-like corrections [20, 21] into a standard NLO computation.
In practice this is achieved by associating a “most-probable” branching history to each kinematic
configuration, through which it becomes possible to evaluate the couplings at the branching scales,
as well as to include (MiNLO) Sudakov form factors (FF). This prescription regularizes the NLO
computation also in the regions where jets become unresolved, hence the MiNLO procedure can be
used within the POWHEG formalism to regulate the B̄ function for processes involving jets at LO.

In a single equation, for a qq̄-induced process as W+W− production, the MiNLO-improved
POWHEG B̄ function reads:

B̄WWJ−MiNLO = αS(qT )∆
2
q(qT ,MX)

[
B(1−2∆

(1)
q (qT ,MX))+αSV (µ̄R)+αS

∫
dΦradR

]
, (2.1)

where X is the color-singlet system (WW in this case), qT is its transverse momentum, µ̄R is set to
qT , and ∆q(qT ,Q) = exp

{
−

∫ Q2

q2
T

dq2

q2
αS(q2)

2π

[
Aq log Q2

q2 +Bq

]}
is the MiNLO Sudakov FF associated

to the jet present at LO. Convolutions with PDFs are understood, B is the leading-order matrix
element for the process pp→ X + 1 jet (stripped off of the strong coupling), and ∆

(1)
q (qT ,Q) (the

O(αS) expansion of ∆q) is removed to avoid double counting. We also notice that B̄WWJ−MiNLO is a
function of ΦX+ j, i.e. the phase space to produce the X system and an extra parton, which can be
arbitrarily soft and/or collinear.

In ref. [22] it was also realized that, if X is a color singlet, upon integration over the full phase
space for the leading jet, one can formally recover NLO+PS accuracy for the process pp→ X
by properly applying MiNLO to NLO+PS simulations for processes of the type pp→ X + 1 jet.4

Besides setting µF and µR equal to qT in all their occurrences, the key point is to include at least
part of the Next-to-Next-to-Leading Logarithmic (NNLL) corrections into the MiNLO Sudakov
form factor, namely the B2 term: by omitting it, the full integral of eq. (2.1) over ΦX+ j, albeit
finite, differs from σNLO

pp→X by a relative amount αS(MX)
3/2, thereby hampering a claim of NLO

accuracy.
The B2 coefficient is process-dependent, and formally also a function of ΦX , because part

of it stems from the 1-loop correction to the pp→ X process. For Higgs, Drell-Yan, and V H
production, these 1-loop corrections can be expressed as form factors: B2 becomes just a number as
its dependence upon ΦX disappears, and the analogous of eq. (2.1) can be easily implemented [22,
24]. For diboson production, the situation is more delicate. First, extracting B2 for the WW case
is more subtle, as the virtual corrections to the pp→WW process don’t factorize on the Born
squared amplitude, hence B2 = B2(ΦX). As a consequence, a mismatch between different phase

4The idea has been generalized recently in ref. [23].
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spaces becomes apparent, because in eq. (2.1) B̄WWJ−MiNLO depends upon ΦX+ j, whereas B2 needs
to be computed as a function of ΦX . In ref. [18] these two issues were handled as follows:

• to compute B2 we started from the relatively simple expression used for the Drell-Yan case,
and replaced its process-dependent part [V/B]DY =CF(π

2−8) with the corresponding term
for WW production: [V/B]WW (ΦWW ) =VWW (ΦWW )/BWW (ΦWW ).

• in order to evaluate B2, we defined on an event-by-event basis a projection of the WW +

1 jet state onto a WW one, using the FKS mapping relevant for initial-state radiation as
implemented in the POWHEG BOX [25]. For real emission events, a similar mapping was
used. In all cases, in the qT → 0 limit, the effect of these projections on the final state
kinematics smoothly vanishes, making sure that the precise numerical determination of B2 is
affected only beyond the required accuracy.

In ref. [18] we have built a POWHEG generator for the pp→W+W−+ 1 jet process, and
upgraded it with MiNLO, according to the aforementioned procedure. We worked in the 4-flavour
scheme, including exactly the vector bosons’ decay products, as well as finite-width effects and
single-resonant contributions. Tree-level matrix elements were obtained with an interface to
MadGraph4 [26, 27], whereas one loop corrections were computed with GoSam2.0 [28, 24].

The left panel of Fig. 2 shows the transverse momentum spectrum of the WW system as ob-
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Figure 2: Transverse momenta of the W+W− system (left panel) and of the leading jet (right panel), at the√
S = 13 TeV LHC. The green curve is the MiNLO prediction (central value with uncertainty) from ref. [18],

the red one is obtained using the original POWHEG generator [29], and the blue line is a partonic NLO result.
Figures taken from ref. [18].

tained with the WWJ-MiNLO generator against the one obtained with the original POWHEG gener-
ator for pp→W+W− [29]. The importance of NLO corrections is manifest in the high-pT tail,
whereas the differences at small pT can be attributed to the differences among the POWHEG and
the MiNLO Sudakovs. The right panel shows instead a comparison for the leading jet pT spec-
trum between the parton-level computation pp→WW +1 jet at NLO, and the MiNLO result. This
observable is formally described with the same accuracy (NLO) by both predictions, as shown in
the plot. The effect of resumming collinear logarithms at small pT is reflected in the difference
between MiNLO and the pure NLO, where no resummation is included. At high pT, j, the small dif-
ferences are due to the fact that different central values for the µR and µF scales are used, namely
µ = pT,WW for MiNLO (as by prescription) and µ = mWW at NLO.
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It will be interesting to improve further the WWJ-MiNLO generator by including the effect
of gg-induced contributions (an NLO+PS study for the ZZ case was performed in ref. [30]) and,
ultimately, matching it to the differential NNLO computation of ref. [31].
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