PROCEEDINGS OF SCIENCE

Cylindrical symmetry: An aid to calculating the zeta-function in 3+1 dimensional curved space

Gopinath Kamath ${ }^{1}$
Department of Mathematics, Indian Institute of Technology Tirupati, Renigunta Road, Tirupati 517 506, India
E-mail: gkamath01865@gmail.com

The spherically symmetric Schwarzschild solution is a staple of textbooks on general relativity; not so perhaps, the static but cylindrically symmetric ones, though they were obtained almost contemporaneously by H. Weyl, Ann.Phys.Lpz. 54 (1917) 117 and T. Levi-Civita, Atti Acc. Lincei Rend. 28 (1919) 101. A renewed interest in this subject in C.S. Trendafilova and S.A. Fulling , Eur.J.Phys. 32 (2011) 1663 - to which the reader is referred to for more references - motivates this work; thus, we rework the AntonsenBormann idea - arXiv:hep-th/9608141v1 - that was originally intended to compute the heat kernel in curved space, to determine - following D.McKeon and T.Sherry, Phys.Rev.D35 (1987) 3584 - the zeta-function associated with the Lagrangian density for a massive real scalar field theory in $3+1$ dimensional stationary curved space, the metric for which is cylindrically symmetric. As a calculation, it pays to use a metric characterised by the parameters j, k with $j=-4$ and $k=-4, \quad j, k$ being integer solutions to $2(j+k)=-j k$. Importantly, this enables - unlike the obvious solution $j=2, k=-1$, an easy evaluation of the momentum integrals implied in the Schwinger expansion for the zeta-function. Happily, the work reported here is easy to go through - relative to that presented by the author at ICHEP2014 with the Schwarzschild metric, and this contrast will be taken up in some detail.

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

[^0]Consider the integral

$$
\begin{equation*}
(\pi)^{2} I=\int_{r} e^{-s(1-u) p^{2}} K(r, p) e^{-u s r^{2}}, K(r, p)=\frac{\left(r^{2}-\vec{r} \cdot \vec{p}\right)\left(p^{2}-\vec{p} \cdot \vec{r}\right)}{(\vec{r}-\vec{p})^{4}} \tag{1}
\end{equation*}
$$

with $\int_{r} \equiv \int_{-\infty}^{\infty} d^{2} r, s$ and u being non-negative constants with the latter less than 1 ; with standard methods one easily gets

$$
\begin{equation*}
2 \pi I=e^{-s p^{2}}\left(2 p^{2}+z\left(e^{a z}-1\right)-p^{2} \int_{0}^{z} d t \frac{e^{a t}}{t}\right), z=\frac{1}{u s}, a=\frac{p^{2}}{z^{2}} \tag{2}
\end{equation*}
$$

As a second example with $m=s(1-u), n=u s(1-w)$ let's calculate

$$
\begin{equation*}
(\pi)^{3} J=\int_{r j} e^{-m p^{2}} K(r, j, p) e^{-n r^{2}} e^{-u s w j^{2}}, K(r, j, p)=\frac{r^{2}-\vec{r} \cdot \vec{p}}{(\vec{r}-\vec{p})^{2}} \frac{j^{2}-\vec{r} \cdot \vec{j}}{(\vec{r}-\vec{j})^{2}} \frac{p^{2}-\vec{p} \cdot \vec{j}}{(\vec{p}-\vec{j})^{2}} \tag{3}
\end{equation*}
$$

with $\int_{r} \equiv \int_{-\infty}^{\infty} d^{2} r$, as before and s, u and w being non-negative constants with each of the latter two less than 1. With two Feynman parameters a, b one gets with $h=a+b+n, \vec{k}=a \vec{p}+b \vec{j}$,

$$
\begin{equation*}
\int_{r} \frac{r^{2}-\vec{r} \cdot \vec{p}}{(\vec{r}-\vec{p})^{2}} \frac{j^{2}-\vec{r} \cdot \vec{j}}{(\stackrel{\rightharpoonup}{r}-\vec{j})^{2}} e^{-n r^{2}}=\frac{\pi}{2} \int_{0}^{\infty} \frac{d a d b}{h^{3}} e^{-a p^{2}-b j^{2}} e^{\frac{k^{2}}{h}} N(p, j) \tag{4}
\end{equation*}
$$

where

$$
N(p, j)=h \vec{j} \cdot \vec{p}+2 \vec{j} \cdot \vec{k} \vec{k} \cdot \vec{p}+2 j^{2}\left(h+k^{2}-h \vec{k} \cdot \vec{p}\right)-\frac{1}{h}\left(4 h \vec{j} \cdot \vec{k}+2 k^{2} \vec{j} \cdot \vec{k}\right)
$$

The inconvenience inherent to the integration over a, b in (4) suggests a rewrite of eq.(3) as

$$
(\pi)^{3} J=\int_{r j a} e^{-m p^{2}} K(r, a, j, p) e^{-n r^{2}} e^{-u s w j^{2}}, K(r, a, j, p)=\frac{r^{2}-\vec{r} \cdot \vec{p}}{(\vec{r}-\vec{p})^{2}} \frac{j^{2}-\vec{a} \cdot \vec{j}}{(\vec{a}-\vec{j})^{2}} \frac{p^{2}-\vec{p} \cdot \vec{j}}{(\vec{p}-\vec{j})^{2}} \delta^{(2)}(\vec{r}-\vec{a})
$$

and the integral representation for the delta-function now helps to obtain

$$
\begin{equation*}
R \equiv \int_{r a} \frac{r^{2}-\vec{r} \cdot \vec{p}}{(\vec{r}-\vec{p})^{2}} \frac{j^{2}-\vec{a} \cdot \vec{j}}{(\vec{a}-\vec{j})^{2}} \delta^{(2)}(\vec{r}-\vec{a}) e^{-n r^{2}}=2 \pi e^{-n p^{2}}\left(I_{1}+I_{2}\right) \tag{5}
\end{equation*}
$$

where

$$
I_{1}=\int_{0}^{\infty} \frac{d b}{g} e^{i b\left(n^{2} p^{2}+i \varepsilon\right)} L(p, j), I_{2}=-\frac{1}{4 m} \int_{0}^{\infty} \frac{d b}{q} e^{r\left(n^{2} p^{2}+i \varepsilon\right)} M(p, j)
$$

with b a Feynman parameter,

$$
2 i \vec{s}=(\vec{j}-(1-i b n) \vec{p}), i \vec{x}=(\vec{j}-(1-r n) \vec{p}), n r=(1+i b n), g=4 s^{2}, q=x^{2}
$$

and

$$
\begin{gather*}
L(p, j)=A(\vec{j}, \vec{p}, \vec{s})+e^{-\frac{i g}{b}} B(\vec{j}, \vec{p}, \vec{s}) \quad, A(\vec{j}, \vec{p}, \vec{s})=-\left(n p^{2}+\frac{2 i}{g} \vec{p} \cdot \vec{s}\right) \vec{j} \cdot \vec{s}+\frac{i}{4} \vec{j} \cdot \vec{p}, \\
B(\vec{j}, \vec{p}, \vec{s})=-A(\vec{j}, \vec{p}, \vec{s})-\frac{2}{b} \vec{p} \cdot \vec{s} \vec{j} \cdot \vec{s}, M(p, j)=C(\vec{j}, \vec{p}, \vec{z})+e^{\frac{q}{r}} D(\vec{j}, \vec{p}, \vec{z}), \\
C(\vec{j}, \vec{p}, \vec{x})=-i n\left(\vec{j} \cdot \vec{p}-\frac{2}{q} \vec{p} \cdot \vec{x} \vec{j} \cdot \vec{x}\right), D(\vec{j}, \vec{p}, \vec{x})=-C(\vec{j}, \vec{p}, \vec{x})+\frac{2}{r} \vec{j} \cdot \vec{x}\left(\frac{q}{r}+i n \vec{p} \cdot \vec{x}\right) \tag{6}
\end{gather*}
$$

As eq.(5) is easier to work with than (4) and the calculation of J needs just the evaluation of

$$
\begin{equation*}
2 \pi e^{-n p^{2}} \int_{j}\left(I_{1}+I_{2}\right) \frac{p^{2}-\vec{p} \cdot \vec{j}}{(\stackrel{\rightharpoonup}{p}-\bar{j})^{2}} e^{-u s w j^{2}} \tag{7}
\end{equation*}
$$

it pays to pause the calculation at this stage so as to net more dividends elsewhere with the approach adopted here.

A physical setting for I and J

Consider the following line element in $3+1$ dimensional curved space

$$
\begin{equation*}
d s^{2}=\frac{a^{4}}{r^{4}} c^{2} d t^{2}-\frac{a^{8}}{r^{8}} d r^{2}-r^{2} d \theta^{2}-\frac{a^{4}}{r^{4}} d z^{2} \tag{8}
\end{equation*}
$$

with $r^{2}=x^{2}+y^{2}$, and a a constant. Eq.(8) yields a time - independent, cylindrically symmetric metric $g_{\mu \nu}$ whose non-zero elements in Cartesian coordinates are

$$
\begin{equation*}
g_{00}=\frac{a^{4}}{r^{4}}, g_{11}=-\frac{a^{8} x^{2}}{r^{10}}-\frac{y^{2}}{r^{2}}, g_{12}=-\frac{a^{8} x y}{r^{10}}+\frac{x y}{r^{2}}, g_{22}=-\frac{a^{8} y^{2}}{r^{10}}-\frac{x^{2}}{r^{2}}, g_{33}=-\frac{a^{4}}{r^{4}} \tag{9}
\end{equation*}
$$

the others being zero. With $g_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}, \eta_{a b}=\operatorname{diag}(1-1-1-1)$ the vierbeins e_{μ}^{a}-repeated latin and greek indices are summed from 0 to 3 respectively - can now be worked out and one favours the following set for its calculational advantage :
$e_{0}^{0}=0, e_{0}^{1}=\frac{i a^{2}}{r^{2} \sqrt{2}}, e_{0}^{2}=-\frac{i a^{2}}{r^{2} \sqrt{2}}, e_{0}^{3}=0 ; e_{1}^{0}=\frac{i a^{4} x}{r^{5}}, \quad e_{1}^{1}=0, \quad e_{1}^{2}=0, \quad e_{1}^{3}=\frac{y}{r}$
$e_{2}^{0}=\frac{i a^{4} y}{r^{5}}, \quad e_{2}^{1}=0, \quad e_{2}^{2}=0, \quad e_{2}^{3}=-\frac{x}{r} ; \quad e_{3}^{0}=0, \quad e_{3}^{1}=\frac{a^{2}}{r^{2} \sqrt{2}}, \quad e_{3}^{2}=\frac{a^{2}}{r^{2} \sqrt{2}}, e_{3}^{3}=0$
Their inverses e_{b}^{μ} got from $e_{\mu}^{a} e_{b}^{\mu}=\delta_{b}^{a}$ work to
$e_{0}^{0}=0, e_{0}^{1}=-\frac{i x r^{3}}{a^{4}}, e_{0}^{2}=-\frac{i y r^{3}}{a^{4}}, \quad e_{0}^{3}=0 ; \quad e_{1}^{0}=-\frac{i r^{2}}{a^{2} \sqrt{2}}, e_{1}^{1}=0, \quad e_{1}^{2}=0, \quad e_{1}^{3}=\frac{r^{2}}{a^{2} \sqrt{2}}$
$e_{2}^{0}=\frac{i r^{2}}{a^{2} \sqrt{2}}, \quad e_{2}^{1}=0, \quad e_{2}^{2}=0, \quad e_{2}^{3}=\frac{r^{2}}{a^{2} \sqrt{2}} ; \quad e_{3}^{0}=0, \quad e_{3}^{1}=\frac{y}{r}, \quad e_{3}^{2}=-\frac{x}{r}, \quad e_{3}^{3}=0$
and determine $g^{\mu \nu}=\eta^{a b} e_{a}^{\mu} e_{b}^{\nu}$ with $\eta^{a b}=\operatorname{diag}(1-1-1-1)$. Eqs.(1) and (3) can now be motivated with the Lagrangian density for a real massive scalar field in $3+1$ dimensional curved space namely,

$$
\begin{equation*}
L=\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2} \tag{12}
\end{equation*}
$$

Following Antonsen and Bormann [1,2] the operator $B=-\partial_{\mu}\left(g^{\mu \nu} \partial_{\nu}\right)-m^{2}$ associated with (12) is first reworked as

$$
\begin{align*}
B & =-\partial_{\mu}\left(\eta^{a b} e_{a}^{\mu} e_{b}^{\nu} \partial_{\nu}\right)-m^{2}=-\eta^{a b} \partial_{a} \partial_{b}-m^{2}-e_{\mu}^{a} \partial_{a}\left(e_{b}^{\mu}\right) \partial^{b} \\
& =p_{0}^{2}-\vec{p}^{2}-m^{2}-e_{\mu}^{a} \partial_{a}\left(e_{b}^{\mu}\right) \partial^{b} \Rightarrow p_{0}^{2}+\vec{p}^{2}-m^{2}-e_{\mu}^{a} \partial_{a}\left(e_{b}^{\mu}\right) \partial^{b} \tag{13}
\end{align*}
$$

in momentum space, with (13) being obtained from the transition to Euclidean space. With the vierbeins in eqs.(10) and (11) the last term in (13) labelled heretofore as H_{2} works to $H_{2}=\frac{2 i}{r^{2}}\left(x p_{1}+y p_{2}\right)$ and with $H_{0}=p_{0}^{2}+p_{3}^{2}-m^{2}, I_{0}=p_{1}^{2}+p_{2}^{2}$ one now has $e^{-s B}=e^{-s H_{0}} e^{-s\left(I_{0}+H_{2}\right)}$ with $B=H_{0}+I_{0}+H_{2}$ and s a scalar. Following McKeon and Sherry [3] the zeta-function $\zeta(s)$ is now defined as

$$
\begin{equation*}
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} d u u^{s-1} \operatorname{tr}\left(e^{-B u}\right)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} d u u^{s-1} \operatorname{tr}\left(e^{-u H_{0}} e^{-u\left(I_{0}+H_{2}\right)}\right) \tag{14}
\end{equation*}
$$

and one can now write the Schwinger expansion $[3,4]$ to the third order for the operator $e^{-u\left(I_{0}+H_{2}\right)}$; it is

$$
\begin{align*}
& e^{-\left(I_{0}+H_{2}\right) u}=e^{-I_{0} u}+(-u) e^{-I_{0} u} H_{2}+\frac{(-u)^{2}}{2!} \int_{0}^{1} d w e^{-u(1-w) I_{0}} H_{2} e^{-u w I_{0}} H_{2} \tag{15}\\
& +\frac{(-u)^{3}}{3!} \int_{0}^{1} w d w \int_{0}^{1} d w_{1} e^{-u(1-w) I_{0}} H_{2} e^{-u w\left(1-w_{1}\right) I_{0}} H_{2} e^{-u w w_{1} I_{0}} H_{2}+\ldots
\end{align*}
$$

The integrals I and J are the matrix elements of the third and fourth terms in eq.(15) respectively, they being determined as in Ref. 3 and the second term likewise works to $L=-\frac{2 i e^{-u \vec{p}^{2}}}{(2 \pi)^{2}} \int_{x} \frac{(\vec{r} \cdot \vec{p})}{r^{2}+i \varepsilon}=0$.With eq.(2),one now has the main result of this report - inspired by cylindrical symmetry in $3+1$ dimensional curved space using the method of operator regularization [3,4] to 1- loop order - viz.

$$
\begin{equation*}
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} d u u^{s-1} \operatorname{tr}\left(e^{-u\left(H_{0}+p^{2}\right)}\left\{1+\frac{(-u)^{2}}{4 \pi} \int_{0}^{1} d w\left(2 p^{2}+z\left(e^{a z}-1\right)-p^{2} \int_{0}^{z} d t \frac{e^{a t}}{t}\right)\right\}\right) \tag{16}
\end{equation*}
$$

with $u w z=1, a z^{2}=p^{2}$ in eq.(16). Parenthetically, a similar derivation has been carried out elsewhere[5] but with the BTZ metric [6] in $2+1$ dimensions.

Qualitatively, the calculation presented here is viable relative to that with the spherically symmetric Schwarzschild metric[7].Put differently, the counterpart of H_{2} above but with the Schwarzschild metric is far too cumbersome to make an exact evaluation[8] of even the third term in eq.(15) in terms of matrix elements worthwhile; on the other hand, the exact evaluation of eq.(1) above and its further use to get eq.(16) here underlines our assertion that with cylindrical symmetry - and an appropriate choice of the vierbeins $e_{\mu}^{a}-$ an easier calculation happens. To emphasise this latter remark, note that eq.(8) is just one example of a more general cylindrically symmetric solution discussed recently by Trendafilova and Fulling[9] namely,

$$
\begin{equation*}
d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \theta^{2}+r^{2 b} d z^{2} \tag{17}
\end{equation*}
$$

with the parameters a, b being solutions of $a b=-(a+b)$. Continuing, it is easy to check that the form of H_{2} with the appropriate e_{μ}^{a} for

$$
\begin{equation*}
d s^{2}=\frac{r^{2}}{b^{2}} c^{2} d t^{2}-\frac{r}{b} d r^{2}-r^{2} d \theta^{2}-\frac{b}{r} d z^{2} \tag{18}
\end{equation*}
$$

with b a constant in (18) has the same infirmity as that with the spherically symmetric metric of Schwarzschild[7]; in conclusion, eqs.(8) and (18) are just special cases of

$$
\begin{equation*}
d s^{2}=r^{j} c^{2} d t^{2}-r^{(j+k)} d r^{2}-r^{2} d \theta^{2}-r^{k} d z^{2} \tag{19}
\end{equation*}
$$

where $2(j+k)=-j k$, but the edge the former has over the latter for the derivation reported here spurs a second look at (16) using Ref. 3 to determine the one-loop corrected propagator in curved space-time; this will be dealt with elsewhere.

References

[1]. F.Antonsen and K.Bormann, arXiv:hep-th/9608141v1.
[2]. K.Bormann and F.Antonsen, in Proc. $3{ }^{\text {rd }}$ Alexander Friedmann International Seminar,arXiv:hep$t h / 9608142 \mathrm{v} 1$
[3]. D.G.C.McKeon and T.N.Sherry, Operator regularization and one loop Green's functions, Phys.Rev.D35 (1987) 3854
[4]. J.Schwinger, On gauge invariance and vacuum polarization, Phys.Rev. 82 (1951) 664
[5]. Gopinath Kamath, A calculation of the zeta-function in a quantum field theory in curved space,MG14 Proceedings.
[6] M.Banados, C.Teitelboim and J.Zanelli,The Black hole in three-dimensional space-time, Phys.Rev.Lett. 69 (1992) 1849
[7]. See for example A.Papapetrou, Lectures on General Relativity, Reidel (1974), Dordrecht(Holland).
[8]. Gopinath Kamath, Reworking the Antonsen - Bormann idea,II. ICHEP2014 Proceedings.
[9]. C.S.Trendafilova and S.Fulling, Static solutions of Einstein's equations with cylindrical symmetry, Eur.J.Phys. 32 (2011) 1663.

[^0]: ${ }^{1}$ Speaker
 © Copyright owned by the author(s) under the terms of the Creative Commons
 Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

