
P
o
S
(
I
C
H
E
P
2
0
1
6
)
7
9
1

 

 Copyright owned by the author(s) under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ 

            

 

 

Cylindrical symmetry: An aid to calculating the zeta-function in 3 + 1 dimensional curved space 

 

______________________________________________________________________________________ 

Gopinath Kamath
 1
 

Department of Mathematics, Indian Institute of Technology Tirupati, 

Renigunta Road, Tirupati 517 506,India 

E-mail: gkamath01865@gmail.com 

 

 

 

The spherically symmetric Schwarzschild solution is a staple of textbooks on general relativity; not so  

perhaps, the static but cylindrically symmetric ones, though they were obtained almost contemporaneously 

by H. Weyl, Ann.Phys.Lpz.54 (1917) 117 and T. Levi-Civita, Atti Acc. Lincei Rend. 28 (1919) 101.  A   

renewed interest in this subject in C.S. Trendafilova and S.A. Fulling , Eur.J.Phys. 32 (2011) 1663 – to 

which the reader is referred to for more references – motivates this work; thus, we rework the Antonsen-

Bormann idea – arXiv:hep-th/9608141v1 –  that was originally intended to compute the heat kernel in curved 

space, to determine – following D.McKeon and T.Sherry, Phys.Rev.D35 (1987) 3584 – the zeta-function 

associated with the Lagrangian density for a massive  real scalar field theory in 3 + 1 dimensional stationary 

curved space, the metric for which is cylindrically symmetric. As a calculation, it pays to use a metric    

characterised by the parameters kj, with 4j  and 4k ,   kj,  being integer solutions to 

  jkkj 2 . Importantly, this enables – unlike the obvious solution 1,2  kj , an easy evaluation 

of the momentum integrals implied in the Schwinger expansion for the zeta-function. Happily, the work   

reported here is easy to go through – relative to that presented by the author at ICHEP2014 with the 

Schwarzschild metric, and this contrast will be taken up in some detail. 
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Two integrals and their evaluation 

 

Consider the integral 
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, s and u being  non-negative constants with the latter less than 1; with standard methods   

one easily gets  
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As a second example with    wusnusm  1,1  let’s calculate       
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with 




 rd
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2
,as before and us, and w being  non-negative constants with each of the latter two less than 1. 

With two Feynman parameters ba, one gets with ,, jbpaknbah
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where 
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The inconvenience inherent to the integration over ba,  in (4) suggests a rewrite of eq.(3) as  
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and the integral representation for the delta-function now helps to obtain
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where  
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withb  a Feynman parameter,  
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As eq.(5)  is easier to work with than (4) and the calculation of J  needs just the evaluation of 
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it pays to pause the calculation at this stage so as to net more dividends elsewhere with the approach adopted 

here. 

A physical setting for I and J  

 

Consider the following line element in 3 + 1 dimensional curved space  
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with 
222 yxr  , and a  a constant. Eq.(8) yields a time – independent, cylindrically symmetric metric 

g  whose non –zero elements  in Cartesian coordinates are
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the others being zero. With 
ba

ab eeg    ,  1111  diagab  the vierbeins 
ae – repeated latin and 

greek indices are summed from 0 to 3 respectively – can now be worked  out and one favours the following 

set for its calculational advantage :  
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Their inverses 

be  got from 
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and determine 
  ba

ab eeg  with  1111  diagab . Eqs.(1) and (3) can now be motivated with  

the Lagrangian density for a real massive scalar field in 3 + 1 dimensional curved space namely, 
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Following Antonsen and Bormann [1,2]  the operator   2mgB  


  associated with (12) is first 

reworked as 
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in momentum space,with (13) being obtained from the transition to Euclidean space. With the vierbeins in 

eqs.(10) and (11) the last term in (13) labelled heretofore as 2H works to   2122
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   with 200 HIHB  and s a 

scalar. Following McKeon and Sherry [3] the zeta-function  s  is now defined as  
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and one can now write the Schwinger expansion[3,4] to the third order for the operator 
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; it is 
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The integrals I and J are the matrix elements of the third and fourth terms in eq.(15) respectively, they being 

determined as in Ref.3 and the second term likewise works to  
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.With eq.(2),one 

now has the main result of this report – inspired by cylindrical symmetry in 3 + 1 dimensional curved space 

using the method of  operator regularization[3,4] to 1- loop order – viz.   
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with 
22,1 pazuwz   in eq.(16). Parenthetically,a similar derivation has been carried out elsewhere[5] but 

with the BTZ metric [6] in 2 + 1 dimensions.  

 

Qualitatively, the calculation presented here is viable relative to that with the spherically symmetric 

Schwarzschild metric[7].Put differently, the counterpart of 2H above but with the Schwarzschild metric is 

far too cumbersome to make an exact evaluation[8] of even the third term in eq.(15) in terms of matrix 

elements worthwhile; on the other hand, the exact evaluation of eq.(1) above and its further use to get eq.(16) 

here underlines our assertion that with cylindrical symmetry –  and an appropriate choice of the vierbeins 
ae – an easier calculation happens. To emphasise this latter remark, note that eq.(8) is just one example of a 

more general cylindrically symmetric solution  discussed recently by Trendafilova and Fulling[9] namely,  
  222222222 dzrdrdrrdtrds bbaa         (17) 

with the parameters ba,  being solutions of  baab  . Continuing, it is easy to check that the form 

of 2H  with the appropriate 
ae  for  

222222
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r
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r
ds        (18) 

with b  a constant in (18) has the same infirmity as that  with the spherically symmetric metric of 

Schwarzschild[7]; in conclusion, eqs.(8) and (18) are just special cases of 
  2222222 dzrdrdrrdtcrds kkjj         (19) 

where jkkj  )(2 ,but the edge the former has over the latter for the derivation reported here spurs a 

second look at (16) using Ref.3 to determine the one-loop corrected propagator in curved space-time; this 

will be dealt with elsewhere. 
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