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We study the mixed effect of QCD and QED corrections to the evolution of parton distribution
functions (PDFs). The Altarelli-Parisi splitting functions are extended to one order higher in
QED, reaching O(α α2

S ) accuracy. This also involves extending DGLAP equations to include
charge separation effects, that are ignored for pure QCD corrections. Besides that, these effects
are crucial for the determination of the photon distribution, which plays an increasingly important
role in nowadays phenomenological analysis.
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1. Introduction

The computation of higher-order corrections in QCD is a crucial part of the theoretical pro-
gram in particle physics. In particular, the Altarelli-Parisi (AP) [1] splitting functions are a key
component in these computations since they dictate the behaviour of scattering amplitudes in the
collinear limit, besides establishing the evolution of parton distribution functions (PDFs) through
the well-known DGLAP equations.

Due to the fact that O(α2
S) ≈ O(α) for LHC processes, it becomes necessary to take into

account also EW corrections. Thus, in this work, we present the computation of mixed QCD-
QED corrections to the splittings functions and their effects in the evolution equations. The first
noticeable modification is the presence of non-trivial photon and leptonic distributions. Thus, the
evolution equations have to be generalized, which also implies new evolution kernels that appear
at O(α) and beyond.

In order to exploit the previous knowledge of pure QCD corrections to AP kernels [2, 3, 4], we
applied an Abelianization algorithm that allowed to isolate the photon contributions and obtain the
full QED correction by adjusting the colour and symmetry factors [5, 6]. These results complement
our previous research on the QCD-QED splitting functions in the time-like regime [7, 8, 9], thus
establishing a complete framework for obtaining higher-order mixed QCD-QED corrections in
hadronic observables.

2. Results and discussion

The starting point consists in the extension of the usual DGLAP equations to deal with pho-
ton and lepton distributions. In the most general case, this leads to a coupled system of integro-
differential equations. In order to simplify this problem, we change the PDFs basis as suggested in
Ref. [10] and impose some physical constraints in the AP kernels. In particular, up to O(α2 αn

S),
we have Plq 6= Pql and ∆PS

f F ≡ 0, where we use the notation Pi j = ∑k,l ak
Sal P(k,l)

i j with α ≡ 2π a and
αS ≡ 2π aS, to perform the perturbative expansion of the splitting function associated to the process
j→ i+X . The singlet and non-singlet distributions are properly defined in Refs. [5, 6], as well as
the remaining shorthand notation used across this article. After these considerations, the DGLAP
coupled system is diagonalised partially, i.e.

dqvi

dt
= P−qi

⊗qvi ,
dlvi

dt
= P−l ⊗ lvi ,

d{∆l
2,∆

l
3}

dt
= P+

l ⊗{∆
l
2,∆

l
3} ,

d{∆uc,∆ct}
dt

= P+
u ⊗{∆uc,∆ct} ,

d{∆ds,∆sb}
dt

= P+
d ⊗{∆ds,∆sb} , (2.1)

for the valence distributions {qv, lv} and singlets {∆l
2,∆

l
3,∆uc,∆ct ,∆ds,∆sb}. The evolution of the

remaining components is dictated by more complicated equations [5, 6], which we avoid here for
the sake of simplicity.

On the other hand, we applied an Abelianization algorithm, as carefully described in Ref. [5],
to extract the Abelian contributions to the mixed QCD-QED kernels. Roughly speaking, the central
idea is replacing gluons with photons, but taking care of counting factors and vanishing topologies.
The pure NLO QCD results (i.e. O(α2

S) contain diagrams with up to two gluons; thus, we can
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Figure 1: K factors for the qγ (left) and γq (right) splitting functions (%). O(α2) and O(α αS) terms are
included. An enhancement of the EM charge distinction in P(i, j)

qγ close to x≈ 0.65 is predicted.

replace one gluon by a photon to recover O(α αS) corrections, or replace both gluons to obtain
the O(α2) kernels. It is worth appreciating that keeping track of the contributing topologies was
crucial to check our results.

The evolution equations listed in Eq. (2.1), together with the non-diagonal ones associated to
the remaining distributions, are subject to physical constraints in the end-point region (i.e. x = 1).
Explicitly, by imposing momentum and fermion number conservation for the proton, we have

0 =
dP
dt

=
∫ 1

0
dxx

(
dg
dt

+
dγ

dt
+∑

f

(
d f
dt

+
d f̄
dt

))
,

∫ 1

0
dxP−f = 0 , (2.2)

which gives rise to a collection of equations that constrains the δ (1− x) term in Pgg, Pγγ and Pf f ,
for both leptons and quarks. The coefficients obtained from imposing the sum-rules agree with
those that we get by applying the Abelianization algorithm to the pure QCD end-point coefficients.
Again, this constitutes a second cross-check of our results.

In order to illustrate the effects of the computed corrections, we plot the quark-photon K-
factors, i.e. K(i, j)

ab = ai
S a j P(i, j)

ab (x)/PLO
ab (x), where the LO is defined as PLO

ab = aS P(1,0)
ab + aP(0,1)

ab .
The results are shown in Fig. 1. We appreciate that, besides providing a non-negligible percent-
level correction in comparison with the LO QED results, mixed QCD-QED contributions enhance
charge separation at O(α2). This might originate important effects in the determination of photon
distributions from global analysis.

3. Conclusion

We have obtained the complete set of Altarelli-Parisi kernels to O(α αS) and O(α2), including
those related to leptonic and photon densities. These new distributions mix in the evolution with
the usual QCD parton distributions, as a consequence of the photon-mediated interaction starting
at two-loops in QED.
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For computing these kernels, we started from the well-known splitting functions at two-loops
in pure QCD (i.e. O(α2

S)). After a careful application of an Abelianization algorithm, we manage
to identify and extract the corresponding photon contributions.

On the other hand, we studied the phenomenological consequences of these corrections to the
evolution equations and splitting kernels. We confirmed that two-loop corrections are negligible
for the pure quark kernels, but become sizeable in Pqg and Pgq for small values of the momentum
fraction. In fact, the QED interactions could generate corrections of O(2%) for photon initiated
splittings. This was recently confirmed in Ref. [11], where a complete analysis of the photon
distribution was presented.

Finally, it is worth appreciating that the knowledge of the full set of AP kernels is crucial
not only for improving the determination of the photon distribution, but also for achieving a fully
consistent treatment of infrared (IR) singularities in the computation of hadronic observables with
EW corrections. Recent works in EW corrections to gauge boson production [12] address this
issue, and provide a practical application of higher-order AP splittings. From the theoretical point
of view, the mixed QCD-QED splitting kernels are vital ingredients to built the counter-terms that
cancel the IR divergences in initial-state radiation, thus allowing to safely compute up to O(α2)

contributions.
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