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The 2014 P5 report [1] indicated the accelerator-based neutrino and rare decay physics research as a 
centrepiece of the US domestic HEP program. Operation, upgrade and development of the accelera-
tors for the near-term and longer-term particle physics program at the Intensity Frontier face formida-
ble challenges. Here we discuss key elements of the accelerator physics and technology R&D pro-
gram toward future multi-MW proton accelerators.  
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1. Introduction 
 
         The 2014, the Particle Physics Project Prioritization Panel (P5) report [1] identified the top 
priority of the domestic intensity frontier high-energy physics for the next 20-30 years to be a 
high energy neutrino program to determine the mass hierarchy and measure CP violation, based 
on the Fermilab accelerator complex which needs to be upgraded for increased proton intensity. 
To this end, a new beam line -  the Long Baseline Neutrino Facility (LBNF) – and new 
experiment - the Deep Underground Neutrino Experiment (DUNE), located in the Sanford Un-
derground Research Facility (SURF) - are being planned [2]. This will be a truly international 
collaboration, including contributions from 150 institutions in 27 countries. The P5 physics goals 
require about 900 kt·MW·years of exposure (product of the neutrino detector mass, average 
proton beam power on the neutrino target and data taking period) and that can be achieved assum-
ing a 40 kton Liquid Argon detector and accelerator operation with the eventual multi MW beam 
power. Construction of the PIP-II SRF 800 MeV linac [3] is expected to address the near-term 
challenges. PIP-II will increase the Booster per pulse intensity by 50% and allow delivery 1.2 
MW of the 120 GeV beam power from the Fermilab’s Main Injector, with power approaching 1 
MW at energies as low as 60 GeV, at the start of DUNE/LBNF operations ca 2023. Extensive 
accelerator R&D program towards multi-MW beams has been started in the US and it has three com-
ponents: demonstration of novel techniques for high-current beam accelerators at IOTA, cost-effective 
SC RF and high-power targetry (HPT).      

2. Experimental R&D with high brightness beam at IOTA ring 
Progress of the Intensity Frontier accelerator based HEP is hindered by fundamental beam 

physics phenomena such as space-charge effects, beam halo formation, particle losses, transverse 
and longitudinal instabilities, beam loading, inefficiencies of beam injection and extraction, etc. 
The Integrable Optics Test Accelerator (IOTA) facility at Fermilab [4] is being built as a unique 
test-bed for transformational R&D towards the next generation high-intensity proton facilities – 
see Fig. 2. The experimental accelerator R&D at the 40 m circumference IOTA ring  - see Fig.1 
- with high brightness 70 MeV/c protons and 150 MeV/c electrons, augmented with correspond-
ing modeling and design efforts has been started at  Fermilab in collaboration more than two 
dozen universities, National and international partners [5]. 

 

Figure 1: IOTA ring, its electron and proton injection lines and experimental areas.  

The goal of the IOTA research program is to carry out experimental studies of transform-
ative techniques to control proton beam instabilities and losses, such as integrable optics [6] with 
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non-linear magnets and with electron lenses, and space-charge compensation with electron lenses 
and electron columns [7, 8] at beam intensities and brightness 3-4 times the current operational 
limits, i.e., at the space-charge parameter ΔQSC approaching or even exceeding 1. Several experi-
ments are planned at IOTA: i) Test of Integrable Optics (IO) with Electrons with a goal to 
create IO accelerator lattice with several additional integrals of motion (angular momentum and 
McMillan-type integrals, quadratic in momentum); ii) IO with Non-linear Magnets, Test with 
Protons will demonstrate nonlinear integrable optics with protons with a large betatron frequency 
spread ΔQSC>1 and stable particle motion in a realistic accelerator design; iii) IO with e-lens(es), 
Tests with Protons to demonstrate IO with non-Laplacian electron lenses with the electron 
charge distribution as n(r)=1/(1+r2)2 to obtain a large betatron frequency spread ΔQSC>1 and sta-
ble particle motion in a realistic accelerator design; iv) Space-Charge Compensation (SCC) 
with e-lens(es), Test with Protons has the main goal of demonstrating SCC with Gaussian ELs 
with protons with a large betatron frequency spread ΔQ>0.5 and stable particle motion in a real-
istic accelerator design.  Similar SCC tests are envisioned with electron columns [8].  

In 2016, the IOTA team has commissioned 50 MeV SRF electron pre-injector [5]. Oper-
ation of the IOTA ring with 150 MeV electrons in planned for 2017, and with protons in 2019.   

3. Cost effective SRF technology 
     Superconducting RF is the state-of-the-art technology with an unmatched capability to provide 
up to 100% beam duty factor and large apertures to preserve the beam quality. In the past, the 
SRF R&D program has been focused on improving the accelerating gradients in “traditional” Nb 
structures, extending from 3 MV/m to some 35 MV/m. The demands of the Intensity Frontier 
accelerators shift of focus towards decreasing the costs of SRF construction and operation 
through: a) nitrogen doping for ultra-high Q cavities, which opens up more than a factor of two 
in the quality factors (Q) of bulk niobium cavities and, therefore, postential for savings in cryo-
genics capital and operational costs [9]; b) development Nb3Sn cavities for 4.2K operation, fol-
lowing the proof-of-principle demo that Nb3Sn cavities could provide the same quality factors at 
>4.2K as bulk niobium cavities do at 2K [10]; c) using Nb/Cu composite material and monolithic 
techniques of cavity manufacturing; these avenues promise a factor of >2 reduction in cavity ma-
terial and manufacturing costs with performance comparable to bulk Nb cavities. It was recently 
shown that 1.3 GHz Nb-Cu composite based spun cavities can sustain high accelerating gradients. 
Fermilab, in collaboration with Cornell University, will use the existing Nb-Cu sheets to spin the 
cavities at INFN(Italy) or US industry (e.g. AES) to complete the 650 MHz cavities with flanges 
as the first step followed by scaling to 325 MHz if successful. Recent breakthrough in Nb film 
deposition technology allows films of unprecedented quality with the residual resistivity ratio 
(RRR) approaching or exceeding 200-300, which is currently the standard for bulk SRF cavities.  
The RF properties of these films will be tested, and after confirmation of low surface resistance 
of the samples, a prototype 650 MHz Nb/Cu cavity will be built and studied. 

4. High power targetry R&D 
Mega-watt class target facilities present many technical challenges, including: radiation 

damage, rapid heat removal, high thermal shock response, highly non-linear thermo-mechanical 
simulation, radiation protection, and remote handling [11]. The major goal of the envisioned R&D 
program for the next decade is to enable well-justified design simulations of high intensity 
beam/matter interactions using realistic, irradiated material properties for the purposes of design-
ing and predicting lifetimes of multi-MW neutrino and muon target components and systems. 
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This requires: a) irradiated material properties to be measured/evaluated for relevant targetry ma-
terials over a range of temperatures (300 – 1300 K), radiation damage (0.1 – 20 DPA (Displace-
ments Per Atom)) and relevant helium production rates (500 – 5000 atomic parts per mil-
lion/DPA); b) thermal shock response to be evaluated for relevant targetry materials over a range 
of strain rates (100 – 10000 s-1); c) development and validation of simulation techniques to model 
material response to beam over the time of exposure (accounting for accumulation of radiation 
damage and high spatial gradients); d) development of enabling technologies in target materials, 
manufacturing techniques, cooling technologies, instrumentation, radiation protection, and re-
lated systems to meet the targetry challenges of multi-MW and/or high intensity (> 500 MW/m3 
peak energy deposition) requirements of future target facilities. 

Radiation damage studies include investigations of materials of high interest (currently 
graphite, beryllium, tungsten and titanium alloys) under the RaDIATE R&D program [12]. The 
most major of these activities involve Post-Irradiation Examination (PIE) of previously irradiated 
materials recovered from spent target components (e.g. NuMI proton beam window), low-energy 
ion and high energy proton irradiations at available beam facilities (e.g. Brookhaven Linac Isotope 
Producer [13]), and experiments designed to help correlate low energy ion irradiations to high 
energy proton irradiations. 

Thermal shock response studies include in-beam thermal shock experiments of various 
grades of commercially pure beryllium at the HiRadMat Facility [14] at CERN (e.g. HRMT-24, 
“BeGrid” [15]) and high strain rate testing of candidate materials to develop strength and damage 
models. 
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