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The NEXT collaboration aims to observe the neutrinoless double beta decay (ββ0ν) of 136Xe.
If exisiting, the rareness of this decay demands an exceptional background rejection. This can
be obtained with an excellent energy resolution, which has been already demonstrated in NEXT
prototypes. In addition to this, any additional tool that can improve background rejection is of
extreme utility. Neutrinoless double beta decay in xenon gas produces a characteristic topological
signal that can be used as an extremely useful extra handle to veto background events. There-
fore, for NEXT, the capability of having track reconstruction is of great value. This need for a
satisfactory topology reconstruction has led the NEXT Collaboration to implement the Maximum
Likelihood Expectation Maximization algorithm (ML-EM) in the data processing scheme. ML-
EM is a generic iterative algorithm for solving many kinds of inverse problems which has never
been applied before to a time projection chamber. Early results and performance of the method
in the collaboration current running detector, NEW, shows promising track reconstruction while
offering a resolution better than 0.5% for energy depostions of energy equal to the Qββ value for
136Xe.
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1. The NEXT experiment

Neutrinoless double beta decay is a hypothetical process where two neutrons of a nuclei trans-
form into two protons emitting only two electrons and no neutrinos. The existance of this decay
would imply that neutrinos are Majorana particles [1].

The experimental signature of this event consists in a fixed energy deposition equal to the
energy difference between the decaying nucleus and its daughter. In addition, if produced in high
pressure gas, the energy deposition will occur along an erratic path with two end-points of higher
energy. This kind of behaviour in gas is unique to double beta decay.

Current experimental measurements estimate the half life of this decay in the xenon isotope
to be longer than 1025 years. Such a rareness implies that background rejection is key in the
performance of the experiments. Good energy resolution plus other ways to improve the rejection
of background are essential requirements for any ββ0ν experiment.

NEXT [2] will look for the ββ0ν of 136Xe in a high-pressure gaseous xenon (HPGXe) time
projection chamber with an intense electric field region to produce light through electroluminis-
cence. This serves as the amplification method. It is designed to offer outstanding energy resolution
for a xenon experiment while having the capability of analyzing the track shape of the events which
can be used as a powerful tool for background discrimination. This is possible due to the assymetric
detector design, with one plane composed of PMTs and optimized for energy measurements while
the other is equipped with SiPMs that provide pixel information.

At the moment, the collaboration is comissioning its largest detector so far, NEXT-White or
NEW, which will provide a precise background model for the experiment. In addition it will serve
as a demonstrator of the performance of the technology in larger volumes than prototypes.

2. Maximum Likelihood Expectation Maximization

Maximum Likelihood Estimation (MLE) is a method suitable for solving a vast variety of
inverse problems. The underlying idea behind it is to maximise the likelihood of a given statistical
model that describes the forward problem. Having a given response, the parameters that maximize
the likelihood of the model provide the most probable cause of the response. This method is
especially useful in complex inverse problems. This is the case of NEXT. However, obtaining a
solution is not immediate if not impossible for several cases.

One can use the log-likelihood function instead of the likelihood which expressed mathemati-
cally would be:

xML = argmaxlogL (x|y), (2.1)

where xML is the ML estimate, L is the likelihood function, y is the vector of observations and x is
the vector of unknown parameters. The log-likelihood to be maximized depends on the underlying
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model. For a Poisson process, one can derive the following log-likelihood function:

logL (x|y) = log
m

∏
l

P(yl|x)

= log
m

∏
l

e−Ax|l (Ax|l)yl

yl!

=−
m

∑
l
(Ax|l− yl log(Ax|l)+ log(yl!), (2.2)

where m is the dimension of y and A is the transformation matrix applied to x to result in y. Even
with the use of the log-likelihood, problems that allow for explicit analytical solutions are usually
extremely rare. Therefore, iterative approaches have to be implemented. In this case the Expecta-
tion Maximization can be used. For this, hidden variables are introduced purely as a mathematical
tool. They are implemented in a way that the maximization is considerably simplified.

L (x|y) = P(y|x) = ∑
z

P(y,z|x), (2.3)

where z is the vector of latent variables and P(y,z|x) is the marginal probability of the observed
data. If we know the value of the parameters x, we can find the value of the latent variables z by
maximizing the log-likelihood over all possible values of z. Conversely, if we know the value of
the latent variables z, we can find an estimate of the parameters x fairly easily by simply grouping
the observed data points according to the value of the associated latent variable. This suggests an
iterative algorithm, in the case where both x and z are unknown. The algorithm works as follows:

1. Initialize the parameters x to an initial value.

2. Expectation step (E-step): compute the best value for z given these parameter values.

3. Maximization step (M-step): Use the values of z to compute a better estimate for x.

4. Iterate steps 2 and 3 until convergence.

3. Applying ML-EM in NEXT

The ML-EM algorithm can be applied to several problems and, specifically, it has been broadly
used in processes of Poisson nature. This is exactly the case of NEXT where scintillation and
photon counting are the underlying processes and, therefore, can be described using eq. (2.2). If
then Expectation Maximization is applied the following formula can be obtained [3, chap. 5.3]:

λm(v) =
λm−1(v)

∑d P(v,d) ∑
d

n(d)P(v,d)
∑
′
v λm−1(v′)P(v′,d)

, (3.1)

where λ (v) is the charge deposited in voxel v being v a volume unit in which the active volume of
the TPC is discretized, P(v,d) is the probability of detection by the detector d of a photon produced
due to charge deposited in v and n(d) is the number of photoelectrons produced in d.

Therefore, to use ML-EM in NEXT a voxelization of the active volume of the detector is
necessary. In addition to that, the probabilities P(v,d) must be computed. This is done using a
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MC simulation which serves as a way of obtaining a parametrization function that convolves all
the effects that can have an impact on the signal.

The observables are the sensor response in both the tracking and energy plane of the TPC. This
signal is also used as the seed for the first iteration, λ0(v). In order to avoid any prior bias, initial
charge of voxels is set as a uniform distribution of the total number of photoelectrons produced at
the PMTs. The output is the collections of voxels that represent the charge distribution inside the
chamber, therefore it’s the track produced by the event (Fig. 1a).

At the same time, the addition of the charge of all voxels gives an estimate for the event energy
(Fig. 1b). ML-EM then provides with just one method a way to obtain both the corrected energy
and the track of any event with outstanding performance for both tasks.
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Figure 1: (a) Characteristic track of a simulated ββ0ν event in NEW detector reconstructed using ML-EM.
(b) Reconstructed energy of the 1.6 MeV peak of 208Tl. Fit shows a 0.58% FWHM energy resolution. It
extrapolates to 0.47% at Qββ .

Currently, only a bidimensional parameterization is used. This implies that all the
longitudinal position dependent effects like diffusion or attachment are not considered. Even so,
results obtained are promising and satisfactory. In future work, a more detailed study of the
topology response of the method and the implementation of a full 3D parameterization of the
detection probabilities will be included.
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