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1. Introduction

The concept of phase-space distribution can be carried over to the context of Quantum Field

Theory. A six-dimensional version has been introduced in Refs. [1, 2] but is valid only for in-

finitely massive targets in order to get rid of relativistic corrections. For finite target mass, a

five-dimensional phase-space distribution free of relativistic corrections can however be intro-

duced within the light-front formalism [3] and appears to be the Fourier transform of Generalized

Transverse-Momentum dependent Distributions (GTMDs) [4, 5, 6]. The latter are in some sense

the mother distributions of Generalized Parton Distributions (GPDs) and Transverse-Momentum

dependent Distributions (TMDs), and provide a natural access to the parton orbital angular mo-

mentum (OAM) [3, 7, 8, 9, 11]. Currently, the best hope to access directly these GTMDs is in the

low-x regime [12, 13, 14, 15, 16, 17].

At leading twist, there are 32 quark phase-space distributions, half of them being associated to

naive T-odd GTMDs and hence encoding initial and/or final-state interactions. A detailed study of

these distributions has been presented in Refs. [3, 18]. Here we will focus on the multipole structure

of the transverse phase space obtained by integrating the five-dimensional phase-space distributions

over the parton longitudinal momentum. This allows us to identify the various possible angular

correlations and to determine how they are encoded in the GPDs and TMDs, easier to access

experimentally.

The plan of the paper is as follows. In Sec. 2 we define the Wigner distribution as a Fourier

transform of the GTMD correlator to the impact-parameter space, and we present its properties

under parity and time-reversal transformations. In Sec. 3, we decompose the Wigner functions in

terms of basic multipoles in the transverse phase space and coefficient functions, and we summarize

all the possible angular correlations encoded in these phase-space distributions. In Sec. 4 we sketch

a new way for depicting the transverse phase space, which allows one to visualize the multipole

structures simultaneously in both the transverse-momentum and transverse-position spaces. In

Sec. 5 we discuss the results for the lowest multipole structure and make the connection with both

GPDs and TMDs. A specific relativistic light-front constituent quark model [5] has been used to

check the generic decomposition and illustrate particular multipole structures. Finally, we gather

our conclusions in Sec. 6.

2. Polarized relativistic phase-space distributions

We adopt the light-front formalism where the components of a four-vector aµ are given by

[a+,a−,aaaT ] with a± = 1√
2
(a0 ±a3). The quark GTMD correlator is then defined as [4, 6]

W ab
Λ′Λ ≡

∫

dk−
∫

d4z
(2π)4

eik·z 〈P+ ∆
2
,Λ′|ψb(− z

2
)W ψa(

z
2
)|P− ∆

2
,Λ〉. (2.1)

W is a Wilson line ensuring color gauge invariance, k is the quark average four-momentum, and

|p,Λ〉 is the spin-1/2 target state with four-momentum p and light-front helicity Λ. A more con-

sistent definition of the GTMDs should in principle also include a soft factor contribution [19], but

the latter has no real impact on the following discussions and can therefore be omitted. We choose
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to work in the symmetric frame defined by Pµ = p′µ+pµ

2
= [P+,P−,000T ]. At leading twist, one can

interpret

W~S~Sq =
1
8 ∑

Λ′,Λ

(1+~S ·~σ)ΛΛ′ Tr[WΛ′ΛΓ~Sq ] (2.2)

with Γ~Sq = γ++Sq
L γ+γ5+Sq j

T iσ j+
T γ5, as the GTMD correlator describing the distribution of quarks

with polarization ~Sq inside a target with polarization ~S [20].

The corresponding phase-space distribution is obtained by Fourier transform [3]

ρ~S~Sq(x,kkkT ,bbbT ; P̂,η) =

∫

d2∆T

(2π)2
e−i∆∆∆T ·bbbT W~S~Sq(P,k,∆)

∣

∣

∆+=0
, (2.3)

and can be interpreted as giving the quasi-probability of finding a quark with polarization ~Sq, trans-

verse position bbbT and light-front momentum (xP+,kkkT ) inside a spin-1/2 target with polarization

~S [3]. The direction of the average target momentum is given by P̂ = ~P/|~P| and the parameter η

indicates whether W goes to +∞− or −∞−. Because of the hermiticity property of the GTMD

correlator (2.2), this phase-space distribution is always real-valued. Moreover, under parity and

time reversal, it behaves as

ρ~S~Sq(x,kkkT ,bbbT ; P̂,η)
P7→ ρ~S~Sq(x,−kkkT ,−bbbT ;−P̂,η),

T7→ ρ−~S−~Sq(x,−kkkT ,bbbT ;−P̂,−η).
(2.4)

There are 16 independent polarization configurations [3, 6] corresponding to 16 independent linear

combinations of GTMDs [4, 6]. Each polarization configuration can further be decomposed into

naive T-even and T-odd contributions

ρ~S~Sq = ρe
~S~Sq +ρo

~S~Sq , (2.5)

where
ρe
~S~Sq(x,kkkT ,bbbT ; P̂,η) = +ρe

−~S−~Sq(x,−kkkT ,bbbT ;−P̂,η),

ρo
~S~Sq(x,kkkT ,bbbT ; P̂,η) =−ρo

−~S−~Sq(x,−kkkT ,bbbT ;−P̂,η).
(2.6)

In some sense, ρe describes the intrinsic distribution of quarks inside the target, whereas ρo de-

scribes how extrinsic initial and/or final-state interactions modify this distribution.

3. Multipole decomposition

The relativistic phase-space distribution is linear in ~S and ~Sq

ρ~S~Sq = ρUU +SL ρLU +Sq
L ρUL +SLSq

L ρLL

+Si
T (ρT iU +Sq

L ρT iL)+Sqi
T (ρUT i +SL ρLT i)+Si

T Sq j
T ρT iT j .

(3.1)

Each component ρX with X =UU,LU,UL, · · · can further be decomposed into multipoles in both

kkkT and bbbT spaces

ρX(x,kkkT ,bbbT ; P̂,η) = ∑
mk,mb

ρ
(mk,mb)
X (x,kkkT ,bbbT ; P̂,η), (3.2)

ρ
(mk,mb)
X (x,kkkT ,bbbT ; P̂,η) = B(mk,mb)

X (k̂T , b̂T ; P̂,η)C(mk,mb)
X [x,kkk2

T ,(kkkT ·bbbT )
2,bbb2

T ], (3.3)
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Figure 1: Simple illustration of the decomposition (3.3) at fixed x and bbbT . The phase-space distribution ρ can be

written as a product of a basic multipole B (here a dipole in kkkT -space) with an oval-shaped coefficient function C.

ρX U L Tx Ty

U 〈1〉 〈Sq
Lℓ

q
L〉 〈Sq

xℓ
q
x〉 〈Sq

yℓ
q
y〉

L 〈SLℓ
q
L〉 〈SLSq

L〉 〈SLℓ
q
LSq

xℓ
q
x〉 〈SLℓ

q
LSq

yℓ
q
y〉

Tx 〈Sxℓ
q
x〉 〈Sxℓ

q
xSq

Lℓ
q
L〉 〈SxSq

x〉 〈Sxℓ
q
xSq

yℓ
q
y〉

Ty 〈Syℓ
q
y〉 〈Syℓ

q
ySq

Lℓ
q
L〉 〈Syℓ

q
ySq

xℓ
q
x〉 〈SySq

y〉

Table 1: Correlations between target polarization (SL,SSST ), quark polarization (Sq
L,SSS

q
T ) and quark OAM (ℓ

q
L, ℓℓℓ

q
T ) encoded

in the different phase-space distributions ρX .

with B(mk,mb)
X the basic multipoles constrained by parity and time-reversal and C(mk,mb)

X the coeffi-

cient functions which depend on P and T-invariant variables only. The couple of integers (mk,mb)

gives the order of the basic multipole in kkkT and bbbT spaces. Fig. 1 gives an illustration of the

decomposition of a phase-space density into basic multipole and coefficient function.

Note that only the multipoles with mb = 0 survive integration over bbbT and reduce to TMD

amplitudes. Similarly, only the multipoles with mk = 0 survive integration over kkkT . The naive

T-even ones correspond to impact-parameter distributions, i.e. Fourier transforms of GPD ampli-

tudes [5, 21]. Interestingly, the naive T-odd ones correspond to new contributions appearing also

in the general parametrization of the light-front energy-momentum tensor [22].

It turns out that the contributions ρX can be understood as encoding all the possible angular

momentum correlations, see Table 1. Note that ~ℓq refers to the canonical quark OAM, since it is

defined in terms of the canonical quark momentum~k [23]. The relation with the various angular

correlations becomes particularly transparent once one sees the five-dimensional relativistic phase-

space distributions as six-dimensional distributions integrated over the quark average longitudinal

position bL =~b · P̂ [18]

ρX(x,kkkT ,bbbT ; P̂,η) =

∫

dbL ρX(~k,~b; P̂,η). (3.4)

Working at the level of phase-space distributions gives us much more insight about the physics

encoded in the various GPDs and TMDs because integrations over bbbT and kkkT usually hide the

precise form of the angular correlation being probed.
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Figure 2: Representation of the transverse phase space. The circle represents the points in impact-parameter space at

a fixed distance |bbbT | from the center of the target. To each point on this circle is associated a distribution in transverse-

momentum space. See text for more details.

4. Representation of transverse phase space

Since we are essentially interested in the traverse phase space (kkkT ,bbbT ), we reduce the num-

ber of variables by integrating the phase-space distributions ρX over x and discretizing the polar

component of bbbT . The resulting transverse phase-space distributions are then represented as sets of

distributions in kkkT -space

ρX(kkkT |bbbT ) =

∫

dxρX (x,kkkT ,bbbT ; P̂ =~ez,η =+1)
∣

∣

bbbT fixed
(4.1)

with the origin of axes lying on circles of radius |bbbT | at polar angle φb in impact-parameter space,

see Fig. 2. In this way, one can see how the transverse momentum is distributed at some point in

the impact-parameter space.

This representation of transverse phase space has the advantage of making the multipole struc-

ture in both kkkT and bbbT spaces particularly clear. For example, the basic multipole B(mk,mb)
X will be

represented by a mk-pole in transverse-momentum space at any transverse position bbbT , with the

orientation determined by mb and φb = arg b̂T . In the following, we chose to represent only eight

points in impact-parameter space lying on a circle with radius |bbbT | = 0.4 fm. Also, for a better

legibility, the kkkT -distributions are normalized to the absolute maximal value over the whole circle

in impact-parameter space

max
|bbbT |=0.4 fm

|ρX(kkkT |bbbT )|= 1. (4.2)

5. Discussion

The results presented here are based on the light-front constituent quark model (LFCQM) [5]

for up quarks. Light and dark regions correspond to positive and negative domains of the transverse

phase-space distributions, respectively. Here we will focus on a couple of multipole structures only.

The interested reader will find the complete discussion in Ref. [22].
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Figure 3: The (0,0) multipole appearing in e.g. ρe
UU . See text for more details.

5.1 (0,0) multipole

The simplest multipole is naturally the one with mk = mb = 0. It appears in ρe
X with X =

UU,LL,T T associated to the respective spin structures 1, SLSq
L and (SSST · SSSq

T ). These spin-spin

correlations survive integration over kkkT and bbbT ; they are respectively related to (H,H̃,HT ) in the

GPD sector and to ( f1,g1,h1) in the TMD sector. Contrary to these GPDs and TMDs, ρe
X is

not circularly symmetric, see Fig. 3. The reason is that ρe
X also contains information about the

correlation between kkkT and bbbT (encoded in the coefficient functions Ce
X through the (b̂T · k̂T )

2

dependence) which is lost under integration over kkkT or bbbT [3].

5.2 (0,1) and (1,0) multipoles

The first non-trivial multipoles are the ones with mk +mb = 1.

The (0,1) multipoles appear in ρe
X with X = UT,TU and in ρo

X with X = LT,T L, see Fig. 4.

In ρe
X , the bbbT -dipole is orthogonal to the transverse polarization (SSSq

T × b̂T )L, (SSST × b̂T )L, and gen-

erates a shift in impact-parameter space which finds its physical origin in the intrinsic correlation

between the transverse polarization and the quark OAM [24]. In ρo
X , the bbbT -dipole is parallel

to the transverse polarization SL(SSS
q
T · b̂T ), Sq

L(SSST · b̂T ), and is associated with an extrinsic double

(longitudinal-transverse) spin-orbit correlation. These dipole structures do not survive integration

over bbbT and cannot therefore be accessed with TMDs. ρe
X however survive integration over kkkT and

are then related to the GPDs (2H̃T +ET ,E), respectively.

Similarly, the (1,0) multipoles appear in ρe
X with X = LT,T L and in ρo

X with X =UT,TU , see

Fig. 5. In ρe
X , the kkkT -dipole is parallel to the transverse polarization SL(SSS

q
T · k̂T ), Sq

L(SSST · k̂T ), and

generates a shift in momentum space which is associated with an intrinsic double (longitudinal-

transverse) spin-orbit correlation. In ρo
X , the kkkT -dipole is orthogonal to the transverse polarization

(SSSq
T × k̂T )L, (SSST × k̂T )L, and indicates the presence of a net transverse flow originating from an

extrinsic correlation between the transverse polarization and the quark OAM, reminiscent of a

5
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Figure 4: The (0,1) multipoles appearing in e.g. ρe
UT and ρo

LT . The arrow indicates the transverse polariza-

tion. See text for more details.

Figure 5: The (1,0) multipoles appearing in e.g. ρe
LT and ρo

UT . The arrow indicates the transverse polariza-

tion. See text for more details.

quantum Hall effect. These dipole structures do not survive integration over kkkT and cannot therefore

be accessed with GPDs. ρe
X and ρo

X however survive integration over bbbT and are then related to the

TMDs (h⊥1L,g1T ) and (h⊥, f⊥1T ), respectively.

5.3 (1,1) multipoles

The last multipoles we will discuss here are the ones with mk = mb = 1. Since mk = mb, these

multipoles are invariant under rotation about the longitudinal direction. They appear in ρe
X with

X =UL,LU and ρo
X with X =UU,LL,T T,T T ′, see Fig. 6. In ρe

X and ρo
T T ′ , the kkkT -dipole is oriented

6
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Figure 6: The (1,1) multipoles appearing in e.g. ρe
UL and ρo

UU . See text for more details.

along the polar direction Sq
L(b̂T × k̂T )L, SL(b̂T × k̂T )L and (SSST × SSSq

T )L(b̂T × k̂T )L. Clearly, ρe
X is

related to the orbital motion of quarks correlated with the longitudinal polarization [3, 7, 8, 9, 10,

11]. ρo
TT ′ is less transparent as it originates from an extrinsic double (transverse-transverse) spin-

orbit correlation. In ρo
X with X = UU,LL,T T , the kkkT -dipole is oriented along the radial direction

(b̂T · k̂T ), SLSq
L(b̂T · k̂T ) and (SSST · SSSq

T )(b̂T · k̂T ), and indicates a net expansion or contraction of the

target in the transverse plane as a consequence of the initial and/or final-state interactions, the most

simple manifestation of the lensing effect in QCD. Unfortunately, none of these structures survive

integration over kkkT or bbbT and cannot therefore be accessed with GPDs or TMDs.

6. Conclusions

We presented and discussed a selection of leading-twist quark Wigner distributions in the

nucleon, introducing a multipole analysis in the transverse phase space. In this approach, the

multipole structures are constrained by parity and time-reversal symmetries and are multiplied

by coefficient functions which depend on P and T-invariant variables only. This representation

has several advantages: it provides a clear interpretation of all the amplitudes in terms of the

possible correlations between target and quark angular momenta in the transverse phase space, and

it provides a convenient basis to make a direct connection with GPDs in impact-parameter space

and TMDs in transverse-momentum space. A new graphical representation has also been proposed

to display these transverse phase-space distributions.

We presented results for a few lowest multipole structures in both impact-parameter and trans-

verse momentum spaces, half of them being naive T-even and representing the intrinsic structure of

the target, the other half being naive T-odd and representing the response of the target to extrinsic

initial and/or final-state interactions. These structures have been confirmed and calculated within a

light-front consituent quark model

7
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