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1. Introduction

These proceedings are based on the work done in [1].

Our aim is to derive perturbative QCD prediction for the asymptotic small Bjorken x behavior

of the quark and gluon helicity distribution functions and for related observables. In these pro-

ceedings we will concentrate on the flavor-singlet quark helicity distribution ∆q(x,Q2). We will

derive helicity evolution equations resumming powers of αs ln2(1/x) with αs the strong coupling

constant: this resummation is referred to as the double-logarithmic approximation (DLA). These

evolution equations allow one to determine the leading perturbative behavior of the small-x asymp-

totics of ∆q(x,Q2) (see [2, 3]). Such theoretical input is necessary to assist the efforts to determine

the small-x part of the quark contribution to proton spin

Sq(Q
2) =

1

2

1
∫

0

dx∆Σ(x,Q2), ∆Σ(x,Q2) =
[

∆u+∆ū+∆d+∆d̄+ . . .
]

(x,Q2), (1.1)

where the helicity parton distribution functions (hPDFs) are

∆ f (x,Q2)≡ f+(x,Q2)− f−(x,Q2). (1.2)

The ultimate goal of determining the proton spin carried by quarks [and the spin carried by the

gluons, SG(Q
2)] is to resolve the proton spin crisis.

2. The Observables

The small-x helicity observables can be obtained by studying the cross section for semi-

inclusive deep inelastic scattering (SIDIS) on a longitudinally polarized target, γ∗ +~p → ~q+X .

The contributions are shown diagrammatically in Fig. 1 (see [4] for a derivation).

x⊥
y⊥

w⊥

x⊥ y⊥

w⊥

k⊥ k⊥
σ σγ∗ γ∗ γ∗ γ∗

z zσ′ σ′q q

Σ Σ

Figure 1: Diagrams contributing to the small-x SIDIS process on a longitudinally polarized target, and to

quark helicity TMD g
q
1L(x,kT ).

The corresponding quark helicity transverse momentum-dependent parton distribution func-

tion (TMD) is [1]

gS
1L(x,k

2
T ) =

8Nc

(2π)6 ∑
f

1
∫

zi

dz

z

∫

d2x⊥ d2y⊥ e−ik·(x−y) x−w

|x−w|2
·

y−w

|y−w|2
d2w⊥ Gx,w(z). (2.1)
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The notation is explained in Fig. 1. Here k = (kx,ky) denotes transverse vectors, with k⊥ = |k|.

Variable z denotes the fraction of the virtual photon’s longitudinal momentum carried by the anti-

quark with zi = Λ2/s, where Λ is the infra-red (IR) cutoff, and s is the SIDIS center-of-mass energy

squared. The object G is the polarized dipole amplitude, which is defined by [1]

G10(z)≡
1

2Nc

〈〈

tr
[

V0V
pol †

1

]

+ tr
[

V
pol

1 V
†
0

]〉〉

(z) = G(x1,x0,z) = G(x10,b,z), (2.2a)

G(x2
01,z)≡

∫

d2b G10(z), (2.2b)

where b = (1/2)(x1 + x0). The propagator of an eikonal quark with polarization σ in the back-

ground quark or gluon field of the target proton is written as

Vx(σ)≡Vx +σV pol
x (2.3)

where

Vx ≡ Pexp



ig

∞
∫

−∞

dx+ A−(x+,0−,x)



 (2.4)

is the light-cone Wilson line, and V pol is the helicity-dependent sub-eikonal correction. The double

angle brackets indicate averaging in the target wave function, with an inverse factor of center-of-

mass energy squared scaled out:

〈. . .〉 (z) =
1

zs
〈〈. . .〉〉(z). (2.5)

The polarized dipole amplitude can be used to obtain other helicity observables. The flavor-

singlet quark helicity PDF,

∆qS(x,Q2)≡ ∑
f

[

∆q f (x,Q2)+∆q̄ f (x,Q2)
]

, (2.6)

at small-x is equal to

∆qS(x,Q2) =
Nc

2π3 ∑
f

1
∫

zi

dz

z

1
zQ2
∫

1
zs

d|x−w|2

|x−w|2
G(|x−w|2,z). (2.7)

The g1 structure function is

gS
1(x,Q

2) =
Nc

2π2αEM
∑

f

1
∫

zi

dz

z2(1− z)

∫

d|x−w|2

[

1

2
∑

λσσ ′

|ψT
λσσ ′ |2(|x−w|2,z)+ ∑

σσ ′

|ψL
σσ ′ |2(|x−w|2,z)

]

× G(|x−w|2,z), (2.8)

where ψT and ψL are the well-known light cone wave functions for the γ∗ → qq̄ splitting (see e.g.

[1]).

Our aim is to find the small-x evolution equations for the polarized dipole amplitude G10(z).

Once G10(z) is found, we can use Eqs. (2.1), (2.7) and (2.8) to construct the flavor-singlet quark

helicity TMD, PDF and the g1 structure function.
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3. Large-Nc Limit

Similar to the case of JIMWLK evolution and Balitsky hierarchy, the general evolution equa-

tion for G10(z) does not close: on its right-hand side it contains operator expectation values other

than G10(z). The operators on the right-hand side contain higher number of Wilson lines than

G10(z). This leads to the helicity evolution analogue of the Balitsky hierarchy.

However, also similar to the unpolarized (BK) case, the evolution equations become closed

equations involving G10(z) in the large-Nc limit. In addition, specific to the helicity evolution case

at hand, evolution equations also close in the large-Nc &N f limit.

Here we simply quote the results, referring the reader to the derivation details in [1, 3]. Similar

to [5], our evolution equations also resum the leading-logarithmic (LLA) powers of αs ln(1/x) by

including the BK/JIMWLK evolved unpolarized dipole S-matrix

S01(z) =
1

2Nc

〈〈

tr
[

V0V
†

1

]〉〉

(z)+
1

2Nc

〈〈

tr
[

V1V
†
0

]〉〉

(z)

≈
1

Nc

〈〈

tr
[

V0V
†
1

]〉〉

(z), (3.1)

where we assume that

tr
[

V0V
†

1

]

= tr
[

V1V
†
0

]

, (3.2)

which is true at LLA. Note that LLA terms of the pure helicity evolution are not systematically

included in this approach: hence we do not have a complete LLA calculation, and our results are

strictly correct only in the DLA limit where S01(z) = 1.

∂
∂ ln z

=

0

1

G10(z)

∂
∂ ln z′

1

0

2

Γ02,21(z
′) =

z

z

z′

+

+ −

+

+

−

Γ02,21(z)

S21(z)

Γ03,32(z
′)

S23(z
′)

3

2

0

1
z

1

0

2
z′

z

S03(z
′)

G32(z
′)

S02(z)

G21(z)

S03(z
′)

G23(z
′)

S02(z)

G12(z)

Γ01,21(z)

Γ02,32(z
′)

Figure 2: Large-Nc helicity evolution for the polarized dipole amplitude G and the neighbor dipole ampli-

tude Γ. For pictorial simplicity we do not show the contributions of the initial condition terms. Double lines

denote gluons at large Nc. Only one of the virtual diagrams is shown (last diagram in each line): virtual

corrections to the right of the shock wave are implied, but not shown explicitly.

The evolution equation for G10(z) is illustrated in the top line of Fig. 2. Note that the large-Nc

limit is gluon-dominated: hence the dipole 10 is made out of quark and anti-quark lines of the

3
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large-Nc gluon. The equation reads (xi j = |xi − x j|, ρ ′2 = 1/(z′ s))

G10(z) = G
(0)
10 (z)+

αs Nc

2π

z
∫

zi

dz′

z′

x2
10

∫

ρ ′2

dx2
21

x2
21

[

2Γ02,21(z
′)S21(z

′)+2G21(z
′)S02(z

′)

+G12(z
′)S02(z

′)−Γ01,21(z
′)
]

, (3.3)

where Γ02,21(z
′) is the new object (as compared to the unpolarized evolution), characteristic of

helicity evolution. Γ02,21(z
′) is the “neighbor dipole” amplitude. Its evolution is described in the

bottom line of Fig. 2. As shown in the figure, the “neighbor” dipole evolution continues in dipole

02, but the information about the dipole 21 comes in through the transverse size integration limit.

(This is in contrast to unpolarized evolution, where the evolution in, say, dipole 02 does not depend

on the size of the dipole 21 or on anything else outside the dipole 02.) The evolution for the

neighbor dipole amplitude reads (ρ ′′2 = 1/(z′′ s))

Γ02,21(z
′) = Γ

(0)
02,21(z

′)+
αs Nc

2π

z′
∫

zi

dz′′

z′′

min{x2
02,x

2
21 z′/z′′}

∫

ρ ′′2

dx2
32

x2
32

[

2Γ03,32(z
′′)S23(z

′′)

+2G32(z
′′)S03(z

′′)+ G23(z
′′)S03(z

′′)−Γ02,32(z
′′)
]

. (3.4)

Eqs. (3.3) and (3.4), when augmented by the BK evolution for S, present a closed system of equa-

tions. The initial conditions G(0) and Γ(0) are given by the Born-level interactions, enhanced by

multiple rescatterings which bring in saturation effects.

In the strict DLA limit we can simplify Eqs. (3.3) and (3.4) by putting S = 1 and assuming that

G21 = G12. We obtain

G01(z) = G
(0)
01 (z)+

αs Nc

2π

z
∫

zi

dz′

z′

x2
10

∫

ρ ′2

dx2
21

x2
21

[

Γ02,21(z
′)+3G21(z

′)
]

, (3.5a)

Γ02,21(z
′) = Γ

(0)
02,21(z

′)+
αs Nc

2π

z′
∫

zi

dz′′

z′′

min{x2
02,x

2
21 z′/z′′}

∫

ρ ′′2

dx2
32

x2
32

[

Γ03,32(z
′′)+3G23(z

′′)
]

. (3.5b)

These equations are solved numerically in [2]. Interestingly, the resulting intercept for small-x

asymptotics of the flavor-singlet helicity observables is different from the one previously derived

in [6] using the IR renormalization group approach. In [3] we identify DLA diagram contributions

not included by the authors of [6] in their treatment of the problem.

4. Large-Nc &N f Limit

Helicity evolution equations also close in the large-Nc &N f limit. To write down these new

evolution equations we need to define a couple of new objects. In addition to G10(z) defined in

Eq. (2.2a) above, which is made out of quark and anti-quark lines of gluons (with x1 line polarized),

let us define

A10(z) =
1

2Nc

〈〈

tr
[

V0V
pol †

1

]〉〉

(z)+
1

2Nc

〈〈

tr
[

V
pol

1 V
†

0

]〉〉

(z) (4.1)

4
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with x1 being a true quark or anti-quark polarized line and x0 being the (anti-)quark line of the

gluon, and

Q10(z) =
1

2Nc

〈〈

tr
[

V0V
pol †

1

]〉〉

(z)+
1

2Nc

〈〈

tr
[

V
pol

1 V
†

0

]〉〉

(z) (4.2)

with both x0 and x1 being true quark and anti-quark lines and x1 polarized.

∂
∂ ln z

∂
∂ ln z

∂
∂ ln z

0

1

Q10(z)

z

0

1

G10(z)

z

0

1

A10(z)

z

=

=

=

Γ02,21(z)

S21(z)

2

0

1
z

Γ02,21(z)

S21(z)

2

0

1
z

Γ02,21(z)

S21(z)

2

0

1
z

+

+

+

S02(z)

G21(z)

S02(z)

G21(z)

S02(z)

G21(z)

+

+

+

S02(z)

A12(z)

S02(z)

G12(z)

S02(z)

A12(z)

−

−

−

Γ̄02,21(z
′)

0

1

2

A21(z)2

0

1

S01(z)

A21(z)2

0

1

S01(z)

−

+

+Γ̄01,21(z)

Γ01,21(z)

Γ̄01,21(z)

Figure 3: Large-Nc &N f helicity evolution for the polarized dipole amplitudes Q, G and A.

Large-Nc &N f evolution equations for Q, G and A are illustrated diagrammatically in Fig. 3,

where again we do not show the initial condition terms for simplicity. The equation for Q is

Q10(z) =Q
(0)
10 (z)+

αs Nc

2π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x10 − x21)

×
[

S21(z
′)Γ02,21(z

′)+S02(z
′)G21(z

′)+S02(z
′)A12(z

′)− Γ̄01,21(z
′)
]

+
αs Nc

4π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x2
10z− x2

21z′)S01(z
′)A21(z

′). (4.3)

Equation (4.3) is illustrated diagrammatically in the first line of Fig. 3. The equation for G is now

G10(z) = G
(0)
10 (z)+

αs Nc

2π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x10 − x21)

×
[

2S21(z
′)Γ02,21(z

′)+2S02(z
′)G21(z

′)+S02(z
′)G12(z

′)−Γ01,21(z
′)
]

−
αs N f

4π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x2
10z− x2

21z′) Γ̄02,21(z
′). (4.4)

Note a new object, Γ̄02,21, which is the neighbor dipole amplitude with line 2 being an actual

polarized quark (or anti-quark), and, unlike in Γ02,21, not a quark (or anti-quark) line of a large-Nc

gluon. Equation (4.4) is illustrated diagrammatically in the second line of Fig. 3.

5
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Finally, the evolution for A01(z) reads

A10(z) = A
(0)
10 (z)+

αs Nc

2π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x10 − x21)

×
[

S21(z
′)Γ02,21(z

′)+S02(z
′)G21(z

′)+S02(z
′)A12(z

′)− Γ̄01,21(z
′)
]

+
αs Nc

4π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x2
10z− x2

21z′)S01(z
′)A21(z

′). (4.5)

It is depicted in the last line of Fig. 3.

Note that Eq. (3.4) for the neighbor dipole amplitude also has to be modified yielding

Γ02,21(z
′) = Γ

(0)
02,21(z

′)+
αs Nc

2π

z′
∫

zi

dz′′

z′′

min{x2
02,x

2
21 z′/z′′}

∫

ρ ′′2

dx2
32

x2
32

×
[

2Γ03,32(z
′′)S23(z

′′)+2G32(z
′′)S03(z

′′)+G23(z
′′)S03(z

′′)−Γ02,32(z
′′)
]

−
αs N f

4π

z′
∫

zi

dz′′

z′′

x2
21 z′/z′′
∫

ρ ′′2

dx2
32

x2
32

Γ̄03,32(z
′). (4.6)

We also need an equation for Γ̄:

Γ̄02,21(z
′) = Γ̄

(0)
02,21(z

′)+
αs Nc

2π

z′
∫

zi

dz′′

z′′

min{x2
02,x

2
21 z′/z′′}

∫

ρ ′′2

dx2
32

x2
32

×
[

Γ03,32(z
′′)S23(z

′′)+G32(z
′′)S03(z

′′)+A23(z
′′)S03(z

′′)− Γ̄02,32(z
′′)
]

+
αs Nc

4π

z′
∫

zi

dz′′

z′′

x2
21 z′/z′′
∫

ρ ′′2

dx2
32

x2
32

S02(z
′)A32(z

′). (4.7)

Both of these equations are diagrammatically illustrated in Fig. 4.

Equations (4.3), (4.4), (4.5), (4.6), and (4.7) are the large-Nc &N f helicity evolution equa-

tions which are DLA in polarization-dependent terms, but also include LLA saturation corrections

through the S-matrices.

In the pure DLA limit we linearize all these equations by putting S = 1 in them (we again

6
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1

0

2

Γ02,21(z
′)

z

z′

0

Γ̄02,21(z
′)

1

2

z

z′

=

=

∂
∂ ln z′

∂
∂ ln z′

+

+

+

+ −

− −

+

Γ̄03,32(z
′)

0

1

2

3

S02(z
′)

1

2

z

A32(z
′)

0

3

Γ03,32(z
′)

S23(z
′)

3

1

0

2
z′

z

Γ03,32(z
′)

S23(z
′)

3

0

1

2

z

z′

S03(z
′)

G32(z
′)

S03(z
′)

G32(z
′)

S03(z
′)

G23(z
′)

S03(z
′)

A23(z
′)

Γ̄02,32(z
′)

Γ02,32(z
′)

Figure 4: Large-Nc &N f helicity evolution for the polarized neighbor dipole amplitudes Γ and Γ̄.

assume that G01 = G10, which is true for a large, longitudinally polarized target):

Q01(z) =Q
(0)
01 (z)+

αs Nc

2π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x10 − x21)
[

G12(z
′)+Γ02,21(z

′)+A21(z
′)− Γ̄01,21(z

′)
]

+
αs Nc

4π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x2
10z− x2

21z′)A21(z
′), (4.8a)

G10(z) =G
(0)
10 (z)+

αs Nc

2π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x10 − x21)
[

Γ02,21(z
′)+3G12(z

′)
]

−
αs N f

4π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x2
10z− x2

21z′) Γ̄02,21(z
′), (4.8b)

A01(z) =A
(0)
01 (z)+

αs Nc

2π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x10 − x21)
[

G12(z
′)+Γ02,21(z

′)+A21(z
′)− Γ̄01,21(z

′)
]

+
αs Nc

4π2

z
∫

zi

dz′

z′

∫

ρ ′2

d2x2

x2
21

θ(x2
10z− x2

21z′)A12(z
′). (4.8c)

7
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The linearized equations for Γ and Γ̄ in the large-Nc &N f limit become

Γ02,21(z
′) =Γ

(0)
02,21(z

′)+
αs Nc

2π

z′
∫

zi

dz′′

z′′

min{x2
02,x

2
21 z′/z′′}

∫

ρ ′′2

dx2
32

x2
32

[

Γ03,32(z
′′)+3G23(z

′′)
]

−
αs N f

4π

z′
∫

zi

dz′′

z′′

x2
21 z′/z′′
∫

ρ ′′2

dx2
32

x2
32

Γ̄03,32(z
′), (4.9a)

Γ̄02,21(z
′) = Γ̄

(0)
02,21(z

′)+
αs Nc

2π

z′
∫

zi

dz′′

z′′

min{x2
02,x

2
21 z′/z′′}

∫

ρ ′′2

dx2
32

x2
32

[

Γ03,32(z
′′)+G23(z

′′)+A23(z
′′)

−Γ̄02,32(z
′′)
]

+
αs Nc

4π

z′
∫

zi

dz′′

z′′

x2
21 z′/z′′
∫

ρ ′′2

dx2
32

x2
32

A32(z
′). (4.9b)

Note that in the large-Nc &N f limit Eqs. (2.1), (2.7) and (2.8) should contain Q10(z) instead of

G10(z).

Clearly in the large-Nc / fixed-N f limit the linearized equations for G01(z) and Γ02,21(z
′) be-

come a closed system of equations (3.5) again, as employed in the previous Subsection. Since our

final observable, quark helicity TMD or hPDF, is related to Q, for the large-Nc limit to be relevant,

G should dominate (or at least be comparable to) A.

The linearized equations (4.8) and (4.9), when solved, should yield the helicity evolution in-

tercept in the large-Nc &N f limit. Solution of Eqs. (4.8) and (4.9) is left for the future (probably

numerical) work.

5. Summary

We have derived small-x evolution equations for the polarized dipole amplitude. The equations

are given above, and close in the large-Nc and large-Nc &N f limits. The solution of these equations

provides theoretical input on the perturbative value of the small-x intercept for the quark helicity

TMD and PDF, and for the g1 structure function.
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