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ing into account successive soft gluon emissions strongly ordered in lifetime. We further resum
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one-loop running of the coupling. The resummed BK equation admits stable solutions, which are
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1. Introduction

It is by now well established that the Balitsky-JIMWLK hierarchy [1, 2, 3, 4, 5] and its mean
field approximation known as the Balitsky-Kovchegov (BK) equation [1, 6] govern the high-energy
evolution of scattering amplitudes in presence of non-linear effects (multiple scattering and gluon
saturation) responsible for unitarization. Some of the most remarkable recent developments in that
context refer to the first calculations of the next-to-leading order (NLO) corrections [7, 8, 9] to
the B-JIMWLK and BK equations. However, the NLO version of the BK equation appeared to
be unstable [10], and hence pretty useless in practice, due to large NLO corrections enhanced by
single or double transverse logarithms.

A similar problem was originally identified and solved at the level of the NLO BFKL equation
[11, 12] — the linearized version of the NLO BK equation which applies so long as the scattering
remains weak. In that context, the solution involved all-order resummations of the perturbative
corrections enhanced by collinear logs, which have restored the convergence of perturbation theory
[13, 14, 15, 16, 17]. In turn, those resummations relied in an essential way on the existence of a
Mellin representation for the (NLO) BFKL kernel and its ‘collinear improvement’. However, this
strategy cannot be simply adapted to the non-linear BK or B-JIMWLK equations, which do not
admit a Mellin representation.

In what follows, we shall describe a different strategy, put forward in Refs. [18, 19] (see also
[20] for another strategy), where the collinear resummations are performed directly in the trans-
verse coordinate space — the most convenient representation for dealing with multiple scattering
in the eikonal approximation.

2. The BK equation: from LO to NLO

The Balitsky-Kovchegov (BK) equation [1, 6] describes the pQCD evolution with increasing
energy of the forward scattering amplitude for the scattering between a quark-antiquark dipole and
a generic hadronic target (another dipole, a proton, or a nucleus), in the limit where the number
of colors is large (Nc→ ∞). The leading order (LO) version of this equation defines the ‘leading
logarithmic approximation’ (LLA): it resums all radiative corrections in which each power of the
QCD coupling ᾱ ≡αsNc/π , assumed to be fixed and small, is accompanied by the energy logarithm
Y ≡ ln(s/Q2

0) (the ‘rapidity’), with s the center-of-mass energy squared and Q0 the characteristic
transverse scale of the target. The LO BK equation reads

∂Txxxyyy(Y )
∂Y

=
ᾱ

2π

∫
d2zzz

(xxx−yyy)2

(xxx−zzz)2(zzz−yyy)2

[
−Txxxyyy(Y )+Txxxzzz(Y )+Tzzzyyy(Y )−Txxxzzz(Y )Tzzzyyy(Y )

]
. (2.1)

where the subscripts xxx, yyy, zzz denote the transverse coordinates of the original quark-antiquark pair
and, respectively, the soft gluon emitted in one step of the evolution. The first term in the r.h.s.,
which is negative, is a ‘virtual’ correction where the soft gluon has no overlap with the target. The
other 3 terms describe ‘real’ corrections where the virtual gluon exists at the time of scattering (see
the left diagrams in Fig. 1). In particular, the term quadratic in T , which is negative, describes
unitarity corrections associated with multiple scattering; these become important when the target
looks dense on the resolution scales of the projectile. For what follows though, we shall be mostly
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Figure 1: Typical diagrams contributing to the BK equation. The thick vertical line stands for the hadronic
target, depicted as a shockwave. Left: LO terms. Middle: NLO terms involving a quark loop. Right: NLO
terms involving a gluon loop.

interested in the dilute target, or weak scattering, regime, where this quadratic term is negligible
and Eq. (2.1) can be well approximated by its linearized version, the celebrated BFKL equation.
We shall moreover focus on the situation where the dipole looks very small on the transverse scale
of the target: rQ0� 1, or Q2�Q2

0, with r≡ |xxx−yyy| ≡ 1/Q. Indeed, this regime is characterized by
the existence of large radiative corrections, enhanced by the transverse (or ‘collinear’) logarithm
ρ ≡ ln(Q2/Q2

0). These corrections come from gluons emissions which occur far outside the original
dipole, such that r� |xxx− zzz| ' |zzz− yyy| � 1/Q0. Such gluons look soft compared to their parent
dipole but still hard compared to the target, so they scatter only weakly: T (z)� 1. In this regime,
T (z)∼ z2, hence the (linear) ‘real’ terms in Eq. (2.1) dominate over the ‘virtual’ one:

∂

∂Y
T (r,Y )

r2 ' ᾱ

∫ 1/Q2
0

r2
dz2 r2

z2
T (z,Y )

z2 . (2.2)

The solution to this equation resums powers of ᾱY ρ to all orders. This double logarithmic enhance-
ment — an energy logarithm and a collinear one — reflects the soft and collinear singularities of
bremsstrahlung. But Eq. (2.2) is not yet the correct double-logarithmic approximation in QCD at
high energy, as we shall see.

The next-to-leading order (NLO) corrections to Eq. (2.1) arise from 2-loop diagrams which
involve at least one soft gluon (see the middle and right diagrams in Fig. 1). The maximal contribu-
tion a priori expected for such a diagram (after subtracting the respective LLA piece, if any) is of
order (ᾱY ρ)× (ᾱρ) = ᾱ2Y ρ2; such a contribution would provide a NLO correction ∼ ᾱρ to the
BFKL kernel which is enhanced by a collinear log. Yet, the explicit calculation of all such 2-loop
graphs in Ref. [7] reveals the existence of even larger corrections, of relative order ᾱρ2, which are
enhanced by a double collinear logarithm. The complete result at NLO appears to be extremely
complicated [7], but it drastically simplifies if one keeps only the terms which are enhanced by at
least one transverse logarithm in the regime where Q2� Q2

0. Then it reads (at large Nc)

∂T (r,Y )
∂Y

' ᾱ

∫ 1/Q2
0

r2
dz2 r2

z4

{
1− ᾱ

(
1
2

ln2 z2

r2 +A1 ln
z2

r2 − b̄ lnr2
µ

2
)}

T (z,Y ) , (2.3)

which exhibits 3 types of NLO terms: the double-collinear log previously mentioned, a single
collinear log with coefficient A1≡ 11/12+Nf/6N3

c , which can be recognized as part of the DGLAP
evolution (see below), and the one-loop running coupling. (In the equation above, b̄ = (11Nc−

2
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Figure 2: The rate (∂Y T )/T (at Y = 0) for the evolution of the dipole amplitude as obtained via numerical
solutions [10, 22] to the NLO BK equation. Left [10]: the strict NLO version of the BK equation [7]. (The
different curves corresponds to different choices of the saturation momentum Qs,0 in the initial condition.)
Right [22]: the ‘collinearly-improved’ version of the NLO BK equation, as constructed in [18, 19].

2Nf)/12Nc is the first coefficient of the QCD β -function, and µ is a renormalization scale at which
the coupling is evaluated.) The NLO corrections enhanced by collinear logs are negative and large
and lead to numerical instabilities which render the NLO BK equation void of any predictive power
[10, 18]. This is illustrated in Fig. 2 (left) and also in Fig. 3 (middle).

The left plot in Fig. 2 exhibits the rate (∂Y T )/T (evaluated at Y = 0) for the evolution of the
dipole amplitude as numerically obtained [10] from the NLO BK equation [7]. This rate appears to
be negative, which signals an instability. (The right plot in Fig. 2 is obtained [22] after appropriate
resummations [18, 19] to be described later.)

The main source of this difficulty is the double-collinear logarithm (DCL) ᾱρ2, whose origin
and resummation will be discussed in the next sections. This is illustrated in the plots in Fig. 3,
which show the dipole amplitude T (r,Y ) as a function of ρ ≡ ln(1/r2Q2

0) as obtained by solving
different versions of the BK equation with initial condition T (r,Y = 0) = exp{−r2Q2

0/4} [18]. The
left plot refers to the LO BK equation (2.1). For a given Y , the respective solution looks like a front
which interpolates between a weak scattering regime at large ρ (small r), where the amplitude is
small and rapidly decreasing with ρ (‘color transparency’), and a strong scattering regime at lower
values of ρ (larger r), where the amplitude approaches the unitarity (or ‘black disk’) limit T = 1.
The transition between these two regimes occurs at the saturation scale ρs(Y ) ≡ ln[Q2

s (Y )/Q2
0],

conveniently defined as the value of ρ where T (ρ,Y ) = 0.5. With increasing Y , the saturation front
progresses towards larger values of ρ , meaning that ρs(Y ) increases with Y — roughly linearly.
However, the speed of this progression predicted by the LO evolution — say, as measured by the
saturation exponent λs≡ dρs/dY — is too large to be consistent with the phenomenology: as visible
in Fig. 4, the LO BK equation with fixed coupling ᾱ = 0.25 yields λs ' 1 for Y & 10, whereas the
fits to the high-energy data at either HERA or the LHC require a lower value λs ' 0.2÷0.3.

The curves denoted as ‘DLA at NLO’ in either Fig. 3 (middle) or Fig. 4 (left) are obtained
by keeping just the double-logarithmic piece of the NLO corrections and illustrate the instability
introduced by this piece (see [18] for details). The other curves refer to various resummations
which stabilize and slow down the evolution, to be later described.
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Figure 3: Numerical solutions to various versions of the BK equation (all with fixed coupling ᾱ = 0.25).
[18]. Left: LO. Middle: DLA at NLO (meaning that one keeps just the DCL among the NLO corrections).
Right: after resumming DCL’s to all orders (that is, by solving Eq. (4.1) with fixed coupling and KSL→ 1).
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Figure 4: The saturation exponent λs ≡ dlnQ2
s/dY predicted by various versions of the BK equation with

either fixed coupling ᾱ = 0.25 (left), or one-loop running coupling (right). The ‘DLA at NLO’ curves show
the instability of the strict NLO approximation, whereas the curves denoted as ‘DLA resum’ and ‘DLA+SL
resum’ demonstrate the effect of successive resummations in stabilizing and slowing down the evolution.

3. Time ordering and double-collinear logarithms

The NLO correction ∼ ᾱρ2 to the kernel arises from a particular 2-loop contribution of order
ᾱ2Y ρ3, which looks anomalously large: it involves a total of 4 (energy or transverse) logarithms,
like the respective LLA contribution ∼ (ᾱY ρ)2. As a matter of facts, this particular NLO contri-
bution is generated by the same 2-loop diagrams (in terms of topology and kinematics) that are
responsible for 2 successive steps in the LLA evolution described by Eq. (2.2): namely, Feynman
graphs involving 2 gluon emissions which are strongly ordered in both longitudinal momentum
and transverse momentum (or transverse size). The physical interpretation of the enhanced con-
tributions becomes most transparent when the 2-loop diagrams are computed within light-cone, or
time-ordered, perturbation theory [18].

For example, let us examine the diagram in Fig. 5 where the longitudinal momenta of the

4
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Figure 5: A typical diagram yielding a NLO correction enhanced by a DCL.

emitted gluons obey q+� p+� k+, whereas their transverse sizes are ordered according to

r = |xxx− yyy| � |uuu− xxx| ' |uuu− yyy| � |zzz− xxx| ' |zzz− yyy| ' |zzz−uuu| � 1/Q0 . (3.1)

We implicitly assumed here that the dipole projectile is a right mover with large longitudinal mo-
mentum q+, while the hadronic target is a left mover with large momentum P−. As visible in
Fig. 5, the softer gluon k is emitted after and absorbed before the harder one p. This particu-
lar time-ordering introduces the energy denominator 1/(k−+ p−) which in turn implies that the
largest logarithmic contributions occur when the lifetimes of the two gluons are also strongly or-
dered: τk ≡ 2k+/kkk2� τp ≡ 2p+/ppp2. Here ppp is the transverse momentum of the gluon p, related
to its transverse size via the uncertainty principle, ppp2 ∼ 1/(uuu− xxx)2, and similarly for the gluon
k. Indeed, when this condition τk � τp is satisfied, then the four integrations over p+, u, k+, and
z are all logarithmic1. Different hookings of the two gluons lead to 32 diagrams like the one in
Fig. 5. Adding all of these contributions, we find in the regime defined in Eq. (3.1) (with simplified
notations |uuu− xxx| → u and |zzz−uuu| → z)

∆T (r) = ᾱ
2
∫ dk+

k+
dz2

z2

∫ dp+

p+
du2

u2 Θ
(

p+u2− k+z2) r2

z2 T (z) , (3.2)

where the step-function implements the lifetime constraint. If there were not for this constraint,
Eq. (3.2) would look identical as two iterations of the LO equation (2.2). By integrating out the
intermediate gluon p+,

ᾱ

∫ z2

r2

du2

u2

∫ q+

k+

dp+

p+
Θ
(

p+u2− k+z2) = ᾱ

(
ln

z2

u2 ln
q+

k+
− 1

2
ln2 z2

u2

)
= ᾱY ρ− ᾱρ2

2
, (3.3)

one finds the expected LLA contribution ᾱY ρ plus a term independent of Y , namely −ᾱρ2/2, to
be interpreted as a NLO correction to the kernel for emitting the softer gluon k+. This correction
reproduces the DCL part of the NLO correction in Eq. (2.3), thus clarifying the physical interpreta-
tion of the latter: it expresses the reduction in the rapidity interval ∆Y available to the intermediate

1Other diagrams which are not time-ordered may contain double logarithms individually, but they cancel in the final
answer [18].
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gluon due to the time-ordering constraint. This argument extends to all orders [18]: the perturbative
corrections enhanced by DCLs can be resummed to all orders by enforcing time-ordering within
the ‘naive’ LLA. However this procedure has the drawback to produce an evolution equation which
is non-local in rapidity [18, 20], as already manifest in Eq. (3.2). This non-locality reflects the fact
that the natural evolution variable at high energy is not the longitudinal momentum k+ of a gluon
from the projectile, or the associated rapidity Y = ln(q+/k+), but rather its lifetime τk = 2k+/k2

⊥,
or equivalently η ≡ Y −ρ with ρ = ln(Q2/k2

⊥): the evolution is local in η , but not in Y .

4. The collinearly-improved BK equation

At this stage, something remarkable happens: the non-local equation with time-ordering can
be equivalently rewritten as an equation local in Y , where however both the kernel and the initial
condition at Y = 0 resum corrections to all orders in ᾱρ2 [18]. This equation can furthermore be
extended to resum the single transverse logarithms that appear at NLO, cf. Eq. (2.3), namely the
single collinear logarithms (SCL) which represent the beginning of the DGLAP evolution and the
one-loop running coupling corrections [19].

The SCL too arises from successive emissions in which the second gluon is much softer, both
in transverse and longitudinal momenta, than the first one, but now it is the region τk ∼ τp which
gives the relevant contribution. Its coefficient A1 ≡ 11/12+Nf/6N3

c can be recognized as the first
non-singular term in the small-ω expansion of the DGLAP anomalous dimension [19, 15]. This
implies that in order to resum such SCLs, it suffices to include A1 as an ‘anomalous dimension’,
i.e. as a power-law suppression in the evolution kernel. The running coupling corrections can
be resummed by choosing the renormalization scale µ as the hardest scale in the problem: ᾱ →
ᾱ(rmin), where rmin is the size of the smallest dipole, rmin ≡min{|xxx−yyy|, |xxx−zzz|, |yyy−zzz|}.

We are thus led to the following, collinearly-improved, version of the BK equation, which
faithfully includes the NLO effects enhanced by large (double or single) transverse logarithms, but
improves over the strict NLO approximation by resumming similar corrections to all orders:

∂Txxxyyy

∂Y
=
∫ d2zzz

2π
ᾱ(rmin)

(xxx−yyy)2

(xxx−zzz)2(zzz−yyy)2 KDLA KSL

[
−Txxxyyy +Txxxzzz +Tzzzyyy−TxxxzzzTzzzyyy

]
. (4.1)

As compared to the LO BK equation (2.1), the above equation involves the running coupling
ᾱ(rmin) with the smallest dipole prescription, together with two multiplicative corrections to the
kernel, KDLA and KSL, which encode the resummations of double and respectively single collinear
logarithms. Physicswise, KDLA implements the condition of time-ordering for the successive soft
gluon emissions by the projectile, whereas KSL resums a subset of the DGLAP logarithms (see
Refs. [18, 19] for details). Specifically, KDLA is defined as the function

KDLA(ρ) =
J1
(
2
√

ᾱρ2
)√

ᾱρ2
= 1− ᾱρ2

2
+

(ᾱρ2)2

12
+ · · · , (4.2)

evaluated at ρ2 = LxxxzzzrLyyyzzzr, with Lxxxzzzr ≡ ln[(xxx− zzz)2/r2]. (This kernel KDLA has previously been
identified in transverse momentum space [17], as an approximation to resummations performed
in relation with the NLO BFKL equation [14, 15].) If the double logarithm LxxxzzzrLyyyzzzr is negative,
then one uses its absolute value and the Bessel function J1 gets replaced by the modified Bessel

6
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function I1. Note however that if, e.g., (xxx− zzz)2� r2, so that Lxxxzzzr < 0, then (yyy− zzz)2 ' r2 and hence
Lyyyzzzr ' 0. Accordingly, the relatively small daughter dipoles bring no significant contributions to
the difference KDLA−1. Furthermore,

KSL = exp
{
−ᾱA1

∣∣∣∣ln (xxx−yyy)2

min{(xxx−zzz)2,(yyy−zzz)2}

∣∣∣∣} . (4.3)

If one keeps only the terms of order ᾱ within the product KDLAKSL, one recovers the NLO
collinear logarithms exhibited in Eq. (2.3), as expected. However, any finite-order expansion of
KDLAKSL would artificially enhance the importance of the ‘collinear’ regions in phase-space —
the regions where the successive gluon emissions (or dipole splittings) are strongly ordered in
transverse sizes, or momenta. This is the origin of the instability of the strict NLO approximation
to the high-energy evolution, as previously mentioned.

Vice-versa, the all-order resummation of such corrections within the factor KDLAKSL sup-
presses the contributions from the ‘collinear’ regions and thus restores the convergence of pertur-
bation theory. This is rather obvious for the second factor KSL, which exponentially cuts off the
configurations where the daughter dipoles are either much smaller, or much larger, than the parent
dipole. But this is also true for the other factor KDLA, which, as already mentioned, becomes im-
portant only when the daughter dipoles are sufficiently large, such that ᾱρ2� 1. In that case, the
Bessel function J1

(
2
√

ᾱρ2
)

is rapidly oscillating when varying the position zzz of the emitted gluon,
hence the integral over the regions in space where ‘zzz is large’ (in the sense that |zzz−xxx| ∼ |zzz−yyy|� r)
averages to zero.

As previously mentioned, the resummation of the double collinear logarithms refers not only
to the kernel, where it introduces the factor KDLA, but also to the initial condition to Eq. (4.1) at
Y = 0. The corresponding resummation is discussed in Ref. [18].

In contrast to the strict NLO BK equation, the evolution described by the resummed equation
(4.1) is totally stable. This is illustrated by the right plot in Fig. 3, which refers to the resummation
of the DCL’s alone. That is, the amplitude T (ρ,Y ) shown in that plot is obtained by numerically
solving Eq. (4.1) with a fixed coupling ᾱ = 0.25 and KSL→ 1 [18].

The right plot in Fig. 2, taken from [22], convincingly demonstrates that the terms enhanced by
collinear logarithms represent indeed the largest among all the NLO corrections. That plot exhibits
the evolution rate (∂Y T )/T (plotted as a function of r at Y = 0) obtained by numerically solving
the ‘collinearly-improved’ version of the fully NLO BK equation. That is, on top of Eq. (4.1) one
has added all the “pure-αs” corrections, i.e. the NLO terms which are not enhanced by transverse
logarithms. The evolution rate is seen to be positive (in contrast to the strict NLO result without
resummation, Fig. 2 left), which confirms the stabilizing role of the resummation. It is furthermore
significantly lower than the respective LO result (also shown in Fig. 2 right), thus demonstrating
the role of the higher-order corrections in slowing down the evolution (see also below). But the
most striking feature in that plot is the fact that the “pure-αs” NLO corrections seem to play no role:
their overall effect (as singled out in that plot) is consistent with zero. This strongly suggests that
after the collinear and running coupling resummations, the perturbation theory becomes rapidly
convergent. Accordingly, one may expect the predictions of the collinearly improved BK equation
(4.1) to be quite close to the actual physical results.

7
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Another effect of the various resummations, of utmost importance for the phenomenology, is
to considerably slow down the evolution: the corresponding “evolution speed” — the saturation
exponent λs ≡ dlnQ2

s/dY , with Qs(Y ) the saturation momentum — is substantially smaller than
that predicted by the LO evolution. This is illustrated by the curves denoted as ‘resum’ in Fig. 4.
Also notice the important role played by the running of the coupling in slowing down the evolution
(cf. Fig. 4 right). Already in the absence of any collinear resummation, the running coupling
version of the LO BK equation (i.e. Eq. (2.1) with ᾱ → ᾱ(rmin)) predicts a value λs ' 0.3, which
is about 3 times smaller than the respective prediction of the fixed-coupling scenario with ᾱ = 0.25.
After also including the collinear resummations, one finds λs ' 0.2, which is about the right value
to be consistent with the phenomenology.

Indeed, using Eq. (4.1) together with appropriate forms for the initial condition, we have been
able to obtain good quality fits to the HERA data [21] for the ep reduced cross section at small
Bjorken x≤ 10−2, with only 4 free parameters (for similar fits, without inclusion of the SCLs, see
[23]). The evolution speed extracted from the fits is λs = 0.20÷0.24. A remarkable feature about
these fits is that they are rather discriminatory: they exclude several models for the initial condi-
tions previously used in the literature and also some previous choices for the running coupling.
Conversely, they favor the running-coupling version of the McLerran-Venugopalan model for the
initial condition and the ‘smallest dipole’ prescription ᾱ(rmin) for the running of the coupling.

This work is supported by the European Research Council under the Advanced Investigator
Grant ERC-AD-267258 and by the Agence Nationale de la Recherche project # 11-BS04-015-01.
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