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1. Introduction

The classic QCD analyses of hadronic structure in high energy scattering experiments are
based on collinear factorization picture. Although this approach is very useful to describe pertur-
bative processes, the hadronic structure is much richer than implied in simple collinear picture.
The hadrons in the wave function are certainly correlated. These correlations are not important for
inclusive reactions like DIS, where only the total number of partons in the wave function matters,
or even in semi inclusive DIS which probes the average distribution of partons in the transverse
plane - TMD’s.

It is however clearly very interesting to understand the details of the correlated structure of
hadronic wave function. It must be observable in less inclusive experiments, which for example
measure correlations between produced particles.

The purpose of this contribution is to discuss one very particular type of correlations within
a very specific framework. Namely we will deal with Bose-Einstein correlations between gluons
in a high energy proton wave function[1]. The approximation we use is the so called Color Glass
Condensate (CGC) approximation to a high energy hadronic wave function.

The practical motivation comes from an attempt to understand the so called ridge correlations
in particle production observed in p-p and p-Pb collisions at LHC.

The ridge structure observed in high multiplicity p-p [2] and p-Pb [3] collisions at the Large
Hadron Collider (LHC) triggered an intense activity aimed at understanding the possible physical
origin of correlations between emitted particles. Two basic ideas have been put forward in this
context (see others in [4]).

According to one idea, the origin of the correlations is the same as in similar ridge correlations
observed earlier in heavy ion collisions at the Relativistic Heavy Ion Collider [5] and the LHC [6].
Namely, the angular collimation is due to flow effects in the final state [7]. The qualitative fea-
tures of the high multiplicity p-p and p-Pb data, including the dependence on masses of produced
particles, are well described by the hydrodynamic-based models. It is nevertheless challenging to
explain how the spatially small system produced in the final state in p-p collisions can sustain the
collective behavior necessary for local equilibration.

The second suggestion is that the final state correlations carry the imprint of the partonic
correlations that exist in the initial state. Three different variants of such initial state effects have
been discussed in the literature: local anisotropy of target fields [8], spatial variation of partonic
density [9] and finally the “glasma graph” contributions to particle production [10] within the Color
Glass Condensate (CGC) approach to high-energy hadronic scattering. While the physical origin
of the first two effects is quite clear, the physics behind glasma graphs has not been elucidated
in the literature. On the other hand, numerical calculations based on the glasma graph approach
have been very successful in reproducing the systematics of ridge correlations [11]. It is therefore
important to understand the physics that underlies these numerical results.

The purpose of this Letter is to point out that there exists a general quantum mechanical mech-
anism that leads to positive correlations of emitted particles with similar quantum numbers. It is
operative when the wave function of an incoming hadron is dominated by bosons (gluons), and is
due to Bose enhancement in this wave function. In the next section, after recalling the basic deriva-
tion, we will show that this is precisely the physical mechanism that underlies the glasma graph
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calculation of hadron production in p-p and p-A collisions. The mechanism itself is however more
general, has been widely used for identical mesons in heavy-ion collisions, see e.g. [12]. Analo-
gously, for fermions in the initial state one expects the opposite effect, namely Pauli blocking. In
the final section, after discussing our results, we briefly address the question of which final state
observables could be sensitive to the initial state Pauli blocking.

To avoid confusion, we stress that by Bose enhancement we do not mean the Hanbury-Brown-
Twiss (HBT) correlations between emitted particles, which arise due to emission from a large
source comprised of many incoherent emitters. We rather mean the effect of Bose statistics that
enhances the probability to find two identical bosons with the same transverse momentum in the
incoming projectile wave function before the collision. Although this initial state enhancement is
for two incoming bosons with identical transverse momentum, the momenta of the two are modified
differently by the interaction with the target. Thus after scattering the two bosons emerge in the
final state with different momenta. The correlation between the directions of the two momenta is
nevertheless preserved in some range of kinematics, see later.

2. Gluon production and Bose enhancement

2.1 Basics of Bose enhancement

The prototypical textbook calculation of Bose enhancement proceeds as follows [13]. Con-
sider a state with fixed occupation numbers of N species of bosons at different momenta, |{ni(p)}〉≡
∏i,p

1√
ni(p)!

(a†
i (p)/

√
V )ni(p)|0〉, i = 1, . . . ,N, with a finite volume V and periodic boundary condi-

tions so that momenta are discrete. The state is translationally invariant with mean particle density

n≡ 〈{ni(p)}|a†i(x)ai(x)|{ni(p)}〉= ∑
i,p

ni(p). (2.1)

Hereafter we take ∑p ≈
∫

d3 p/(2π)3. The 2-particle correlator in coordinate space is

D(x,y)≡ 〈{n(p)}|a†i(x)a† j(y)ai(x)a j(y)|{n(p)}〉. (2.2)

This is calculated by going to momentum space, where the operator averages are simple:

〈{n(p)}|a†i(p)a† j(q)ai(l)a j(m)|{n(p)}〉 (2.3)

= 〈{n(p)}|δ (p− l)δ (q−m)a†i(p)ai(p)a† j(q)a j(q)

+ δ (p−m)δ (q− l)a†i(p)a j(p)a† j(q)ai(q)|{n(p)}〉
≈ δ (p− l)δ (q−m)∑

i
ni(p)∑

j
n j(q)

+ δ (p−m)δ (q− l)∑
i

ni(p)ni(q),

where we have neglected the terms where all momenta are equal, which are suppressed by a phase
space factor. Using this, the result for D(x,y) reads

D(x,y) = n2 +∑
i

∣∣∣∣∫ d3 p
(2π)3 eip(x−y)ni(p)

∣∣∣∣2 . (2.4)
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The last term expresses the Bose enhancement. It vanishes when the points are very far away,
and gives O(1/N) enhancement when the points coincide. The O(1/N) suppression of the second
term relative to the first one is due to the fact that the second term contains a single sum over the
species index. The physics is that only bosons of the same species are correlated with each other.
Technically the origin of this additional contribution is the “wrong contraction” term in eq. (2.3).

The Bose enhancement is a generic phenomenon, and is not tied specifically to the state with
fixed number of particles. An overwhelming majority of pure states or quantum density matrices
exhibit Bose enhancement at some degree. There is however one type of states that do not exhibit
such behavior, notably classical-like coherent states. Consider a coherent state

|b(x)〉 ≡ exp{i
∫

d3x bi(x)(ai(x)+a†i(x))}|0〉. (2.5)

A trivial calculation in this state gives

〈b(x)|a†i(x)ai(x)|b(x)〉= bi(x)bi(x), (2.6)

〈b(x)|a†i(x)a† j(y)ai(x)a j(y)|b(x)〉= bi(x)bi(x)b j(y)b j(y),

so D(x,y) = n(x)n(y). Thus, in order to exhibit Bose enhancement, a state has to be nonclassical.

2.2 Gluon production via glasma graphs

As stated above, we want to demonstrate that the angular collimation arising from the glasma
graph calculation owes its existence to the Bose enhancement in the projectile wave function. Fol-
lowing [11, 14], we consider the calculation of inclusive two particle production and assume local
parton-hadron duality, namely that at a given momentum the number of produced hadrons is pro-
portional to the number of produced gluons.

The graphs that contribute to this observable can be conveniently represented in terms of av-
erages of gluon creation and annihilation operators in the incoming projectile wave function (see
supplementary material and [14]). They come in three varieties, see fig. 1. Type A graphs give the
contribution whereby two gluons from the incoming projectile wave function scatter independently
on the target. The incoming gluons have transverse momenta k1and k2 respectively. While prop-
agating through the target the first particle picks up transverse momentum p− k1 and the second
particle picks up transverse momentum q− k2, so that the outgoing particles have momenta p and
q. Type B and C graphs from the projectile point of view are “interference graphs”, in the sense that
the final state gluon with momentum p comes from the projectile gluons with different momenta
in the amplitude and complex conjugate amplitude.

Type B and C diagrams contain leading contributions that can be reinterpreted as Type A but
with gluons originating from the target rather than from the projectile, and additionally subleading
contributions, including those that lead to HBT correlations [15]. Therefore, in the following we
will only discuss those of Type A, keeping in mind this complementary interpretation of the leading
pieces of Type B and C.

The Type A contribution to double inclusive gluon production can be written as

C
∫

k1,k2

〈in|a†i
a (k1)a

† j
b (k2)ak

a(k1)al
b(k2)|in〉 (2.7)
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Expansion of the background propagator

Perturbative expansion around free classical path:

a†(k1) a†(k2) a(k2) a(k1)

q

p

q

p

N(p � k1)

N(q � k2)

TYPE A

1

a†(k1) a†(k2) a(k4) a(k3)

q

p

q

p

N(p � k1)

N(q � k2)

TYPE B

1

a†(k1) a†(k2) a(k4) a(k3)

q

p

q

p

N(p � k1) N(q � k4)

TYPE C

1

Tolga Altinoluk Next-to-eikonal corrections in the CGC

Figure 1: Glasma graphs for two gluon inclusive production before averaging over the projectile color
charge density ρ . Black blobs denote vertices which involve two momenta, e.g. δ i j− pik j

1/p2, and dashed
lines the cuts. For details see the text.

×
[

δ
ik− ki

1kk
1

p2

][
δ

jl− k j
2kl

2
q2

]
N(p− k1)N(q− k2),

where |in〉 is the wave function of the incoming projectile, C is a constant, N(p− k) is the proba-
bility that the incoming gluon with transverse momentum k acquires transverse momentum p after
scattering and, hereafter, we use the notation

∫
k ≡

∫ d2k
(2π)2 . This scattering probability is of course

determined by the distribution of target fields (within the glasma graph calculation, the scattering
of the two gluons is independent). We have also assumed that the target wave function is trans-
lationally invariant, so that the momentum transfer is the same to the gluon in the amplitude and
complex conjugate amplitude. The last assumption does not allow one to discuss the correlation
mechanisms proposed in [8, 9] within this framework.

Also note that we have not indicated the rapidity variable on the gluon creation and annihila-
tion operators. Within the glasma graph calculation the gluon production is rapidity independent.
Rapidity dependence becomes significant only when the rapidity difference between the observed
hadrons becomes large, ∆η ∼ 1/αs. The origin of this independence is that the CGC hadronic
wave function is approximately boost-invariant. In fact, only the rapidity independent mode of the
gluon field is large in the wave function of the fast hadron, and only the creation operators of this
one rapidity mode are relevant to the discussion of correlations.

Thus, the creation and annihilation operators entering the above equation are the original gluon
operators integrated over rapidity,

ai
a(k)≡

1√
Y

∫
|η<Y/2|

dη

2π
ai

a(η ,k). (2.8)

Here the rapidity interval Y/2 is arbitrary, but large enough to contain the rapidities of both ob-
served gluons. The operators defined this way satisfy the standard commutation relations in the
transverse momentum space:

[ai
a(k),a

† j
b (p)] = (2π)2

δabδ
i j

δ
(2)(k− p). (2.9)

The integral over momenta k1,k2 in eq. (2.8) contains a contribution from the region k1 = k2. If
the wave function |in〉 exhibits Bose enhancement, there is enhanced probability that the two gluons
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have equal momenta. This excess in the initial state will then translate into final state correlations.
Note that this effect is suppressed by the squared number of colors 1/N2

c , since Bose enhancement
is only operational for bosons with identical quantum numbers.

We thus have to understand what is the nature of the projectile state |in〉, and in particular we
need to calculate

D(k1,k2)≡ 〈in
∣∣a†i

a (k1)a
† j
b (k2)ak

a(k1)al
b(k2)

∣∣in〉. (2.10)

Averaging over the projectile state in the standard CGC approach involves two elements. One
needs to calculate the average over the soft degrees of freedom, as well as that over the valence color
charge density. Conventionally this is done in the spirit of the Born-Oppenheimer approximation,
namely first one averages over the soft gluon degrees of freedom at fixed valence color charge
density ρ , and subsequently averages over the valence density distribution.

The wave function of the soft fields for fixed valence color charge density for a dilute projectile
is a simple coherent state

|in〉ρ = exp
{

i
∫

k
bi

a(k)
[
a†i

a (k)+ai
a(−k)

]}
|0〉, (2.11)

with the Weizsäcker-Williams field bi
a(k) = gρa(k) iki

k2 .
The averaging over the soft degrees of freedom leads to the well known expression for the

observable in terms of the charge density:

D(k1,k2)ρ = bi
a(k1)b

j
b(k2)bk

a(−k1)bl
b(−k2). (2.12)

Since at fixed ρ , the soft gluon state is a coherent state, this expression does not seem to exhibit
Bose enhancement. This is however misleading, since averaging over ρ is part of the quantum
averaging over the initial state wave function |in〉. It is therefore instructive to reverse the conven-
tional order of averaging, and average over the valence degrees of freedom first. The result of such
a procedure is a density matrix on the soft gluon Hilbert space. The subsequent averaging over
this density matrix is a direct way to find out whether the projectile wave function exhibits Bose
enhancement.

2.3 The soft gluon density matrix

The soft gluon density matrix of course depends on the weight for the valence color charge
density. For illustrative purposes we choose the same Gaussian weight used in the glasma graph
calculation, the McLerran-Venugopalan model [16],

〈· · ·〉ρ = N
∫

D[ρ] · · · e−
∫

k
1

2µ2(k)
ρa(k)ρa(−k)

, (2.13)

where N is the normalization factor.
Thus the density matrix of the soft gluons is given by

ρ̂ = N
∫

D[ρ] e
−∫k

1
2µ2(k)

ρa(k)ρa(−k)
(2.14)

× ei
∫

q bi
b(q)φ

i
b(−q)|0〉〈0| e−i

∫
p b j

c(p)φ j
c (−p)
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where we have defined φ i
a(k) = ai

a(k)+ a†i
a (−k). The integral over ρ can be performed with the

result

ρ̂ = e−
∫

k
g2µ2(k)

2k4 kik j φ i
b(k)φ

j
b (−k) (2.15)

×
{

+∞

∑
n=0

1
n!

[
n

∏
m=1

∫
pm

g2µ2(pm)

p4
m

pim
m φ

im
am
(pm)

]
|0〉

× 〈0|
[

n

∏
m=1

p jm
m φ

jm
am
(−pm)

]}

× e−
∫

k′
g2µ2(k′)

2k′4
k′i
′
k′ j
′
φ i′

c (k
′)φ

j′
c (−k′)

.

The interesting correlator is given by

D(k1,k2) = tr[ρ̂a†i
a (k1)a

† j
b (k2)ak

a(k1)al
b(k2)]. (2.16)

It is a matter of straightforward algebra to show that

tr[ρ̂a†i
a (k)a

j
b(p)] = (2π)2

δab δ
(2)(k− p) g2

µ
2(p)

pi p j

p4 ,

tr[ρ̂ai
a(k)a

j
b(p)] = tr[ρ̂a†i

a (k)a
† j
b (p)]

= −(2π)2
δab δ

(2)(k+ p) g2
µ

2(p)
pi p j

p4 (2.17)

and then find

D(k1,k2) = S2(N2
c −1)2 ki

1kk
1k j

2kl
2

k2
1k2

2

g4µ2(k1)µ
2(k2)

k2
1k2

2
(2.18)

×
{

1+
1

S(N2
c −1)

[
δ
(2)(k1− k2)+δ

(2)(k1 + k2)
]}

.

In order to get eq. (2.18), we have made substitutions of the type (2π)2δ (2)(k1− k1)→ S, where
S is the transverse area of the projectile. This regularization amounts to taking into account the
discreteness of the transverse momentum spectrum of confined gluons.

3. Discussion

The first term in eq. (2.18) is the "classical" term equal to the square of the number of parti-
cles. The second term is the typical Bose enhancement term, suppressed with respect to the first
"‘classical"’ term by the total number of degrees of freedom (color and area). The third term is
specific to the density matrix at hand and, as explained in [8], appears due to reality of the gluon
field scattering amplitude. This establishes our point that the soft glue density matrix exhibits Bose
enhancement, so that the likelihood of finding two gluons with the same transverse momentum is
higher than average. Note that this effect is naturally subleading in Nc as the enhancement is only
effective if both gluons are in the same color state.

As a typical Bose enhancement contribution, the second term in eq. (2.18) is nonvanishing
only when the momenta of the two gluons are equal. Note however that k1 and k2 are not the
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momenta of observed gluons, but rather the momenta of gluons in the wave function of the incom-
ing projectile. The two gluons then scatter on the target and acquire momenta p and q with the
probability N(p− k1)N(q− k2), as indicated in eq. (2.8). Nevertheless it is clear that in favorable
kinematics the initial state correlation of eq. (2.18) also appears as a correlation between the final
state particles. Consider for example a situation where the incoming projectile wave function has
an intrinsic saturation momentum Qs, and the momenta p and q are chosen to be of the same order
as Qs i.e. p2 ∼ q2 ∼ Q2

s . In such a situation the production amplitude is dominated by the contri-
bution from |k1|, |k2| ∼ Qs, since the gluon density of the projectile is dominated by those gluons
close to saturation momentum. The delta function in the Bose enhancement term in eq. (2.18)
is then smeared when convoluted with the scattering probability N(p− k1)N(q− k2), but positive
angular correlations between the directions of ~p and ~q clearly survive. Thus the initial correlation
is transmitted to the final state, provided fragmentation and final state effects in p-p and p-A col-
lisions are small. On the other hand, when |p|, |q| � Qs, the initial correlation is smeared out by
the large momentum transfer from the target, and the correlation in the final state should disappear.
These qualitative features are of course borne out by the numerical calculations of [11].

One interesting question naturally follows on from the above discussion. Fermions in the
initial state wave function surely experience Pauli blocking. One therefore may expect negative
correlation between final state hadrons that originate from quarks or antiquarks in the initial state.
Such correlation should exhibit anticollimation rather than collimation, and therefore a valley rather
than a ridge at ∆φ = 0. Whether such a valley extends to large relative rapidities between the
observed particles is a question that should be explored. Quark-antiquark pairs are present in the
hadronic wave function within the CGC approach at the next to leading order in αs via splitting
of gluons. Since the gluonic wave function is boost invariant, the same is true for the quark and
antiquark distribution. However, the main question here is whether the fluctuations around some
"mean field" are not too large to mask the correlations in rapidity event by event. Another way of
saying it, is to recall that in our discussion of gluons only a single rapidity independent mode of
the quantum gluon field was large in the CGC wave function. As a result any correlation extended
over large intervals in rapidity. Whether a similar effect dominates the quark wave function has to
be investigated. Work on these questions is ongoing [17].

Perhaps an even more pressing question to understand is whether such valleys can be observed
experimentally, given that the quark contribution is suppressed by αs relative to that of gluons. Here
we see two possible avenues. One point is that, as opposed to gluon contribution to correlations,
the quark contribution is not symmetric under ∆φ → −∆φ . It thus can generate a nonvanishing
v3 coefficient within the CGC approach. Such mechanism will be quite different from the one
explored in [18] based on the idea of local anisotropy suggested in [8]. Another possibility is to
trigger on final states which predominantly arise from quarks. For example it may be interesting
to study correlations between two D-mesons (or B-mesons), since open charm (or beauty) should
have a relatively larger component coming from fragmentation of quarks, rather than that of gluons
[17].
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